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; developed by-Wood, Wingersky & Lord, was selected for the three-parameter
; model. The two procedures were then compared on their suitability for
use with multivariate item pools, the sample size required for calibration,
the effects of item quality, and the cost of calibration. Sixteen data-
sets were used for these evaluations; eight live testing data~sets, and
eight simulation data-sets generated to match specified factor structures.
_ The one- and three-parameter models were found to estimate different
components when the tests measured several independent factors. The
three~parameter model estimated parameters from one of the factors, !
ignoring the others, while the one-parameter model estimated the sum of
the factors. When a dominant first factor was present in the test, the
two calibration procedures calibrated the items and estimatéd ability om
the first factor. Although the three-parameter model fit the test data
, significantly better than the one-parameter model, there was no difference
for the two procedures in predicting outside criterion measures. The
: sample size analysis showed that the one-parameter mcdel required
substantially fewer cases for item calibration than tne three-parameter
model, Some general sample size recommendations were made. Item ;
quality, as determined by guessing and discrimination parameter estimates,
was. found to affect the fit of the two models to the data. However, . '
the probability of fit statistic given by the one-parameter logistic )
program was affected only by guessing., In terms of cost, the three- '
parameter procedure was found to be substantially more expensive
than the one parameter procedure. Although the three-parameter model
was found to fit the data better than the one-parameter model, the :
ability estimates from the two procedures were highly correlated when
a dominant first factor was present; and the correlations with outside
criterion measures were not significantly different. Since the one-
parameter model costs less to use, it 1is the recommended procedure !
for calibration of 50 item, group administered, multiple-choice exams.
This recommendation does not genmeralize to tailored testing administration,
but only to item calibration for group tests. |
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ABILITY ESTIMATION AND ITEM CALIBRATION

UsiNne THE ONE AND THREE PARAMETER LogIsTic MoDELS:
/

E=3

. A CoMPARATIVE STubY

Latent trait measurement models have slowly made inroads into the
applied areas of testing. Information functions based on latent trait
theory have been used to construct aptifhae tests (Marco, 1976) and the
simple logistic model has been used to sc&@g an achievément test (Woodcock,
1973), while major use of the models has, béen made in’ the area of tailored
testing (Jensema, 1974; Lord, 1970; Rec.case, 1&74 Sameiima, 1975).
Despite the acceptance of the models, debate still exists concerning the
relative value of the various types of models being used. The major facet
of the debate is thz number of parameters igquired to adequately describe
empirical itewm characteristic curves. One point of view epecifies that
three parameters are required to describe the-interaction of a person and
an item: difficulty, discrimination, and guessing. The opposite position
is that only one parameter, difficulty, is required.

Until a point was reached that the latent trait models were regularly
applied to live testing situations, it was sufficient to let the debate
continue on theoretical grounds with the clear edge to three parameter
models when multiple choice items were being considered. However, with
the increasing use of these models in applied settings, and with the lack
of comparative studies, the need for direct empirical comparisons is
clearly indicated. An evaluation is of special importance considering the
needs of tailored testing, where speed of convergence to an ability
estimate and computational efficiency are of great importance. Because
of these added constraints, the simplicity of the one parameter latent
trait models tends to balance the theoretical completeness of the three
parameter models. A

The general orientation of the research program guiding this study
is to apply tailored testing to achievement measurement. This fact places
a number of other constraints on the type of comparison required among
the latent trait test models. Achievement tests typically are constructed
based on different criteria than aptitude tests, Content validity is the
desired goal, rather than the mezsurement of some set” of unidimensional
traits. Construction methods fit items to a table of specifications
yielding tests that may be of substantial factorial complexity. Thus,
sensitivity of the models to multifactor data is a major consideration.

A second factor that will influence the use of latent trait models
for achievement testing is the size of sample required for item
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calibration. If tailored tests are to be used in educaticnal programs that
have some modicum of \flexibility, large samples of students responding to
the items may not be \ttainable before modifications in the instruction
make the test obsoletd. Thus procedures that yield stable calibration
results with relativel\\ small samples will have an edge in terms of appli-
cability. The fluidity educational programs has a further effect on the
qualities desired in the 1 trait models. Often, because of the

short time available for the condfruction of tests, the items in a test
may not”"be of highest quality. Thgrefore, a good model for achievement
testing should be able to function using mediocra items.

The purpose of the research reported here is to evaluate the one and
three parameter logistic models for use in calibrating achievement tests
for use in tailored testing. Toward that end the factors mentioned
above (computational efficiency, robustness to multidimensionality,
effects of sample size, effects of item quality) will be manipulated in
comparing the models. However, the relevant literature will be reviewed
before describing the research design in detail.

Review of the Literature -

The literature on latent trait theory has mushroomed over the last
several years. A count of references since 1974-has yielded well over,
one hundred entries. Since other good reviews of the general area are
already available (i.e. Hambleton, Swaminathan, Cook, Eignor, and Gifford,
1977) ‘this paper will not attempt to summarize the total research effort,
but will be limited to the areas directly related to applying latent
trait models to achievement tests. More specifically, the review will
concentrate or the available item calibration procedures, the effects of

. violating the assumptions of tne models, and the types of tests and sample

sizes appropriate for analysis.

Item Calibration Procedures

Numerous methods have been developed to estimate the item and ability
parameters of the latent trait models. These vary in sophistication
and computational complexity from the early graphic methods used by Rasch
(1960) to the conditional (Andersen, 1973) and unconditional (Wright &
Panchapakesan, 1969) maximum likelihood, least squares (Brooks, 1964),
and empirical Bayes point estimates (Meredith & Kearns, 1973) currently
being used. Many approximation techniques have also been developed to
reduce the complexity of computation and computer time required.

Of the many metnods available, only those appropriate to the simple
logistic and three parameter logistic models applied to dichotomously
scored items will be presented here. Multivariate models, and those
appropriate for nominal, graded, and continuous response data, will be
included only when they apply to the specific models of interest.




Simple Logistic Procedures

A procedure for estimating -the parameters of the simple logistic
model was first presented in Georg Rasch's original exposition of the
. model (Rasch, 1960). His procedure takes advantage of the local indepen-
dence and safficient statistic properties of the model to independently
estimate the ability and easiness parameters. The basic procedure
follows. ’

The simple logistic model as presented by Rasch (1960) is givea by

AE
Plxyy = 1} =73 AiEj" 1)
and , P{x,, = 0} = 1
13 T+ AE,

where xi4i is the score on the item, Aj is the ability of Person i and
Ej is the easiness of Item j. The logarithm of the ratio of the prob-
ability of a correct response to the probability of an incorrect
response is called the logit and is given by

P{x,, = 1}
= 1] =
J
1f a second item, k, is given to Person i, the logit is
= ' \
1, = InA, + InE . (3;
The difference betwean Equations 2 and 3 gives
1ij - 1ik = 1nAi + 1nEj - 1nAi - 1nEk = lnEj - 1nEk
which does not contain the ability parameter. The average logit for
Persun i over all of the items on the test is given by
n
zlij ‘ L(lnA, + lnEj) ‘ 21nEj
N 11. N lnAi + m 1nAj + 1InE,. 4)




Subtracting Equation 4 from Equation 2 gives the basic estimation equation
for the procedure

-
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lyy = 1;. = lnEy - Ink . (5)

If the average log vasiness is set equal to zero, this equation simplifies
to
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Thus, the easiness parameters can be estimated from the difference between
the logit for an ability level and an item, and the average logit over items.
The estimated easiness parameter should be the same regardless of the
ability level: used for the/procedure.
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In order to improve the estimates obtained, Rasch takes advantage
of the fact that Equation 6 is a linear equation of slope 1.0 between the
two logit variables. Therefore, he plots the 1i4 value against 1i. across
ability levels and then fits a slope 1.0 line to the resulting scatter
plot using an "eyeball" technique. The intercept of the plotted line is™
used as the easiness estimate for the item. A similar procedure is used
* -""for the aBilitx pQrametét; except that the average logit over ability
levels is uged. : .
This procedure obviously.yields only rough approximations to the true
parame;ér.Values‘and,zsinge much of the results are based on a subjective’
fit to & seéatter plot,.a fully computerized procedure is not possible.
For these reasons, Rgsch's procedure was used only in early exploratory
studie$§ of the model. ’
In 1964, Brooks modified Rasch's procedure to increase its . .
objectivity. Instead of visually fitting a slope 1.0 line to the plot ‘
of specific ability group logits against average logits, he used linear o
... ‘regression procedures to fit a line using least Squares methodology. This T
! allowed a quasi-statistical test for goodness of .fit of the model to the e
*  test data by testing the empirically obtained slope ‘against the theoretical
. value of 1.0. Brooks admitted that this significancé test was not pracise
'\ . _because the sampling ' distribution of the slope obtained under these
. circumstances was unknown, but ‘he felt it was better than the visual o \
check of the slope that Rasch used. As in the previous technique, the ; R
intercept of the fitted line was used to obtain the parametér estimate. . -

PR
v

Although Brooks' procedure was an improvement over Rasch's )
original demonstration technique, neither it, nor the simple logistic R
model itself gained much prominence until later in the decade. By that “ . :
time however, a more sophisticated maximum likelihood procedure had been . .
derived by Wright and Panchepakesan (1969). This procedure has subse- ‘ )
quently been labeled an unconditional maximum likelihood procedure (UCON) P
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and is the most widely used calibration technique currently available.

Although the original article presents the technique in considerable
detail, a more recent article (Wright & Douglas, 1977a) gives a clearer
exposition. /
N
The unconditional maximum likelihood procedure can best be
summarized using the exponential form of the simple logistic model:

xij(ei - bj)

P{x, .} = = (7)
ij (6, - b))
1l +e i 3

AL e
Cieea Y K
Ly R

N
.

where 94 = ;ﬂAl and bj = -lnEj Using this equation, the likelihood of
the entire matrix of responses of N persons to L items is given by

J NL
1Ex, (8, - b.)
ij ij h|
A= . ) (8) -+
NL (6. - b.)
m +e - 3

1]

Taking the logarithm of this equation simplifieg matters substanitally,
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yielding 5
N L NL (9i - bj)
A= 1nA = Zriei— Esjb. - LEIn(l + e ) (9
1 393 44

where ri is the raw sccre for Person i and sj is the number of times Item
j is answered correctly.

The first and second derivatives of Equation 9 are then computed
with respect to 6 and b. These derivatives are used, along with a sorting
of the data into raw score groups to take advantage of the model's
sufficient statistic properties to arrive at equations for finding the
maximum of A. A Newton-Raphson technique is used for this purpose,
with iterations continuing until successive estimates become stable. A
detailed description of this procedure can be found in Wright & Douglas

(1977z2).

Although the UCON procedure is the most widely used estimation
technique for the simple logistic model, Andersen (1970) has shown that the
unconditional approach vields inconsistent estimates. That is, as the
sample size increases, the estimates do not approach the parameter
values. Wright & Douglas (1977a, 1977b) have recently discussed this
problem, and have shown that any bias induced is small and that it can
easily be removed with a simple correction factor. The procedure does
have the advantages of estimating ability and item parameters

|
|
|

simultaneously and of being usable with lengthy tests and large samples.
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A procedure that does produce consistent estimates of the par;heters,
the fully conditional proceduves, has been developed by Andersen (1973}
(FCON). This procedure uses the probability of a person's response string
conditional on his raw score. The conditional probability is free of the
ability parameter since the raw score is a sufficient statistic for ability.
The actual procedure begins with the same exponential form for the simple
logistic model as does the UCON procedure (Equation 7).

Since the responses to the items are assumed to be independent of one
another, the probability of the response string for a person is given by

L
r.6, - Ix,.,b,
L 117 48

_ _ e
P{[Xij}} = nP{xiJ} T TL (6, - b))

3 M1l + e . 3 )
h|

where [xij] denotes the vector of responses for person i.

The probability of a raw score r is the sum of the probabilities
of the vectors of responses that yield that raw score.

\ erei
Yr

i
131 =T (6, - b

r
P{r} =t P{Ix )

[fij] ; M(L+e = 37
i

where Y, = is the elementary symmetric function.

The conditional probability of the response string given the raw
score is ther.

P{[xijlf
P{r}

P{[xijllr} =

which does not contain the ability parameter 6.




The likelihood of the entire items-by-persons matrix can now be
found, each person's vector conditional on his raw score
L

-Is,b
31
e 3
S T TR . ()
Ity

' r
: r

where sj is tne number of correct responses to ILtem j and ny is the
number of times raw score r was obtained. The logarithm.gf this value is
used to simplify further computation

-

L L-1
. A = log A = -Isgby ~ I nr log v, . (12)
h| r

Once this likelihood equation is obtained, solution for the item
parameter follows much the same as for the UCON procedure. The first
and second derivatives of Equation 12 are determined with respect to bj
and the Newton-Raphson iterative procedure is used to find the maximum
value of A. .

Although FCON yields better estimates from a statistical point
of view, the procedure suffers from computational difficulties due to
the necessity of computing the elementary symmetric function. If a
. fifty item test were being calibrated using this procedure, computation
: of the elementary symmetric functiop.for a raw score of twenty would
3 require the sum of approximately 10 terms. E£ven the fastest computer
) will be taxed by these computations. Therefore, the FCON procedure has
been limited to application where the test being calibrated has less
than fifteen items.

Wright and Douglas (1977a) have proposed a modification of one
FCON procedure that attempts to solve the problem caused by the
computation of the elementary symmettic functions This procedure,
called the incomplete corditional procedure (ICON), ignores selected
: symmetric functions, thereby improving computational efficiency. The
r resulting parameter estimates obtained using the ICON procedure are .
: virtually the same as the FCON procedure, iniicating that the revisions
} did not affect the accuracy of the method. However, despite the elim-'
¥ ination of some of the symmetric functions, the procedure still becomes
inaccurate if more than twenty to thirty items are used beacuse of
accumulated roundoff errors. Thus the modifications to FCON only put off
the point at which the procedure becomes unusable, and do not totaliy
solve the problem.

AW mpam sk
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Along with these five methods for estimating the parameter of
the simple logistic model, two other more specialized methods should be

Douglas (1977b). This method was derivéd in an attempt to speed up the
estimation process over the UCON method. The procedure starts with the
initial estimates used by the UCON procedure, and then, using the
assumption that the ability parameters are normally distributed, proceeds
with a gimplified iteration prccess fo arrive at estimates. The simplified

thod shortens computation time by a factor of 40 for 50 to 60 item tests,
but it is less accurate than UCON when extreme abilities are present or
when the distribution of abilities is markedly skewed.

The second specialized method for estimation was developed by.
Meredith and Kearns (1973) and is called empirical Bayes point estimation.
This procedure uses the expected value of the posterior distribution of
the parameter of interest based on the raw score distribution to estimate
the parameter. The procedure has been shown to be asymptotically optimal in
the sense of having smaller average error variance -and higher reliability
than any other ability estimate when the sample approaches infinity.
However, for sample less than 5000, the estimates tend to be unstable
(Kearns and Meredith, 1975). This technique has not been extensively

applied.

Three-Parameter Logistic Procedures

Due to the greater complexity of the three-parameter logistic model,
the developmént of estimation procedures has taken longer than those for
the simple logistic model. Fortunately, the logistic item characteristic
curve closely approximates the normal ogive item characteristic curve
(Birnbaum, 1968) allowing the adaptation of the previously developed
normal ogive methodology to this mathematically more convenient model.

The first preéentation of an estimation technique for the three
parameter model was given in an appendix to an article by Lord (1968)
concerning the analysis of the Verbal Scholastic Test. Except for the
problems caused by the inclusion of a guessing parameter in the model, the
method is similar to that used to obtain maximum likelihood estimates of
the two-parameter normal ogive model (lcrd, 1953).

The method begins with the three-parameter logistic equation for
the probability of a correct response to an item )

, N R
Pij = Plx,, =1} =c¢c, +(1-¢cp Da; (6, - by) +
1+e 3 ‘
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where ¢4 is the guessing parameter for Item 1, @y is the discrimination
parameter, and by is the difficulty parameter; 6, is the ability parameter
for person j; and D 1s% constant equal to 1.7 ificluded to maximize the
similarity of the model to the corresponding normal ogive model. Qij is
defined as the probabiiity of an incorrect response and is defined by
1"Pij' :
- “Thé first step in the estimation procedure is to determine the
likelihood of the matrix of responses of the N persons to n items. This
likelihood is given by

n N X 1-x
ij ij
L=00 NP Q (14)
=1 j=1 3 743

‘.

| NG

The logarithm of the likelihood is used for convenience.

n N

inL= £ I [x,.lnP,, + (1 - x,,)1nQ,.] (15)
i=1 j=1 1377143 ij ij

i {_‘}:g_:* N4 e
Eot

§»> , To determine the maximum of Equation 15, the derivative of the equation
is determined relative to aj, by, and 85. The guessing parameter, cj,
is not estimated using maximum likelihood at this point because the
estimation procedure was found to be too unstable. InstZad, the lower
asymptote ~f the item characteristic valye is used in the estimation
equations for the other parameters. A sﬁ@ple of 100,000 cases was used
in the original application study.

(o

[proyerpereayry
thibrad ke

KIS

CY TN

The three derivatives cannot be solved directly for zero because
the individual parameters cannot be isolated as they could be in the simple
: logistic model. instead, rough estimates of the item parameter are obtained
P using them. The resulting ability estimates are then used with the likeli-
" hood equations to obtain new item parameter estimates. The new item
¢ parameter estimates are then used to get new ability estimates, and so
on. The two steps required to get estimates of the item and ability
parameters are called a stage, and required about 15 minutes of computer
time for the SAT analysis. Twenty stages were required for convergence
to satisfactory values for that analysis.

Although the technique developed by Lord does yield usable results,
several difficulties were encountered in its initial application. First,
as mentioned above, the computer time required for. the program is
excessive. Approximately five hours of computer time were required for
application to the Scholastic Aptitude Test data. The computer used
(IBM 7044) was very slow compared to the current generation of computer,
however, indicating that a substantial reduction would be obtained if it
were run now. Setond, tests used for calibration by this procedure
should have at least 50 items and data should be available on at least
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1,000 cases. If enough data is not available, the discrimination parameter
may increase towards positive infinity. Third, occasionally ability
parameters may go toward positive or negative infinity. Lord (1968) is
not too disturbed by this fact because the result is expected whenever

a perfect or zero score is obtained on the test. Fourth, despite ‘large
samples, the procedure may fail to converge in some circumstances. Lack
of convergence may be caused by a single item and the procedure may
converge when the item is removed. Sometimes, the item can be replaced
after convergence has been achieved and a stable estimate can be obtained.
Finally, the necessity of estimating the guessing parameter graphically
from large samples makes the procedure impractical for many applicationms.
Clearly, a more convenient procedure was needed to make the three-
parameter logistic model more generally applicable.

In order to overcome many of these problemsg=ani .extended version
of the procedure was made available in 1973 (Wingersky and Lord, 1973).
This new version extended the maximum likelihood procedure to the guessing
parameter, eliminating the need for extremely large samples to graphkically
estimate the lower asymptote of the item characteristic curve. However,
Christoffersson (1975) has pointed out thai estimating all of the item
parameters and the ability parameters simultaneously is impossible unless
constraints are placed on the parameters. He states that

Intuitively, this seems impossible because the approach is
equivalent to estimating factor loadings, factor scores

and residual variance simultaneously in the case of interval
measurement. This is not possible with the maximum likelihood
method (Anderson and Rubin, 1956) untess some further conditions
are<imposed, such as assuming that the residual variances are
pairwise the same.

To overcome this diffic-lty, numerous constraints have been built
into the estimation program. Along with separating the estimation of
ability and item parameters within a stage as was done in the 1968 version
(Lord, 1968), the amount each parameter can change in each stage is
restricted. This 1s done to reduce wild fluctuations in the estimates.
Further, if a discrimination parameter exceeds a preset maximum value, the
item is automatically removed from the analysis. Changes in the guessing
parameters are severly restricted by the program since, in many cases,
these parameters are poorly determined. Also, limits are placed on the
minimum and maximum values allowed for the discrimination and guessing
parameters.

With all of the constraints placed on the parameters, the procedure
will converge on stable estimates if sufficient cases and test length are
available. The number of items recommended has been reduced to 40 with
this version, but the suggested minimum number of cases is still 1,000.
Computation time has veen reduced consideraQ&?. Time per stage on an

14

(.
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IBM 360/65 computer ranges from 70 to 180 seconds, with 30 to 40 stages
required for convergence. Thus the computation time ranges from a half
hour to two hours as compared to about five hours for the earlier version.

Along with improving the basic computational procedure of the
maximum likelihood method, Lord also modified the procedure to recognize
three modes of response: correct, incorrect, and omit (Lord, 1974). This
--was- accomplished by allowing three item scores, 1 for a correct response,
0 for an incorrect response, and & for an omit response. The value of C
used here is the reciprocal of the number of alternatives to the multiple
choice item. The rationale for this scoring is that a person will only
omit if he cannot guess at better than the chance level. Under those
circumstances, the proportion of correct responses that would be expected
if a person guessed would be equal to C, making this a reasonable level to
use. The likelihood equation (Equation 14) is modified to reflect the
scoring change yielding

n N A i-v
we=1 NP, ijqij 4 (15)
- d=1 j=1 .
where v;s = 1, 0, or C and the asterisk indicates the modified likelihood -
value. Eord (1974) points out that Equation 15 is not really a likelihood
equation because of the change in scoring, but that it tends toward the
same limit when the number of items is large. Also, Equation 15 vields
smaller asymptotic sampling error than the maximum likelihood technique
when the omitted responses are replaced by random responses. Thus, the
modified equation was used in the 1973 version of the procedure
(Wingersky and Loréd, 1973).

The current step in the development of a procedure for estimation
of the three-parameter logistic parameters is a revised edition of the
1973 program for increased efficiency. The revision, called LOGIST (Wood,
Wingersky and Lord, 1976), has reduced the number of stages needed to
reach convergence to 10 to 15. The greater efficiency was achieved by
putting added constraints on the parameters. The ability parameters are
restrained, where previously they were allowed to migrate anywhere
petween positive and negative infinity. Also, limits have been imposed
on the discrimination and guessing parameters. The LOGIST program in
its current and 1973 version is the most commenly used procedures for
estimating the parameters of the three-parameter logistic model.

Because of the lengthy and expensive computation required by the
maximum likelihood procedure, three other techniques have been developed
to try to make parameter estimation more cost effective. The first, a
graphic approximation method developed by Urry (1974), was originally
designed for screening items. In using this method, the lower asymptote
of the item characteristic curve must first be estimated from the item
by total-score-ninus-the-item regression. The ¢y value found in this way
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is used to select the proper nomograph for estimating the discrimination
and difficulty parameters. The nomographs were generated from the
theoretical relationship between the traditional population difficulty
and discximination values and the corresponding latent trait parameters.
To use them, estimates of the population point biserial correlation and
proportion correct are needed. These statistics are computed using
traditional item analysis techniques. Once they are determined, they
are entered into the ordinate and absissa of the nomographs, and the
parameter estimates are read off a separate set of axes.

Urry (1974) has stated that estimates of the traditional item
statistics based on a minimum of 2,000 cases are needed for good results,
and the test should have at least 80 items and a KR-20 reliability of at
least 0.90. When these conditions are met, the maximum likelihood and
nomographic estimates are fairly comparable. In one study the aj values
were found to correlate 0.89 apd bj values 0.97. Urry was so impressed
with these results that he feels the procedure may be used for final
calibration of an item pool rather than as a mere screening device. He
states that "It might well be that the heuristic estimates obtained
through the present approximation method are to be preferred to maximum
likelihood estimates where distortion of the estimates is artificially
induced by the nature of the znalysis ([when low ability cases are dropped
to improve LOGIST convergence]}." )

The second procedure developed to reduce the cost of estimating the
latent trait parameters is called the ancillary estimation procedure
(Urry, 1975). Although it is based on the normal ogive model, it is
included here because the parameter estimates are very close to logistic
valides. This procedure is based on minimum chi-square estimation rather
than the maximum likelihood used by most of the other procedures. The
procedure involves two stages: the first stage uses raw scores as estimates
of ability and the second stage uses Bayesian modal estimates of ability.
The entire procedure can be summarized as follows.

First, initial parameter estimates are obtained~for the item parameters
by finding the minimum of a x2 variable given by

2
m-1 (rj - nj?i(j))

2 =
X, = L
i §=0 ani(j)Qi(j)

(16}

where xzi is the result for Item i, rj is the number of correct responses
to Item 1 for those with raw score j, nj is the number of cases obtaining
a score of j, Pj(j) is the probability of getting Item i correct for
ability j based on the latent trait model, and Q3(j) = 1 - Py(j). 4n
iterative procedure is used to find the parameters aj, bj, and cj, that
are converted to ancillary estimates by correcting them using the Jtem i
information functions (Lord & Novick, 1968). In effect, this corrkction

i6 ,
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,is an inverse weighting by the error of estimate. The purpose of tue
correction is to increase the efficiency of the estimates and to reduce
the intercorrelations between the three parameters.

The ancillary item parameter estimates are then used to obtain
Bayesian modal estimates of the ability parameters (Samejima, 1969). These
“estimates are obtained by finding the values of the ability parameters that
“maximize the following expression
\
B(8) = f(e)npi(e) (17)
i

where £(8) is the normal density function and P{(6) is the probability of

a correct response to Item i as defined by the latent trait model. Once

the new ability estimates are available, they are .used to derive new minimum
chi-sqitare estimates of the item parameters. These new estimates are then
again corrected using the information functions to get the final ancillary
estimates.

The estimates obtained in this way were. evaluated by Schmidt and
Gugel (1975) to determine their effectiveness. They found that "Given at
least 2,000 cases and 100 items of good but not unrealistically high quality,
the procedure produces estimates that correlate fiighly with true parameter,
show low root mean squares, and perform about as well when used in tailored
testing as the true item parameter values." When the Sample - size drops as
‘Jow as 500, the method may fail to converge. :

By far the simplest of the procedures for calibrating items
using the three parameter logistic model was presented by Jensewma (1976).
This procedure is designed mainly for screening items for further analysis
and is not a substitute for maximum likelihood procedures. Jensema's
procedure is based oa the theoretical relationships that exist between the
logistic parameters and traditional item analysis values as presented in
Lord and Novick (1968).

In order tc use this technigque, the guessing parameter, cj, must
first ‘be estimated from the lower asymptote of a plot of the item
characteristic curve for the item. This value is used to adjust the
‘proportion correct for the item using the formula

Pi = ——l-_—cz- (18)

1
where P§y is the estimated proportion correct for item i and P4 “4s the
corrected value. From the correctad value, the cutting point on the
logistic distribution with that proportion abhove it can be obtained from

1, ok
‘Yi='ﬁln—q'— (19)

17
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where D = 1.7, This value, aleng with an estimate of the point-biserial
correlation corrected for guessing, P1gs 1s used to obtain the parameter
estimate using the following formulas

1

P1e
a; = ————— (20)
y1- PIGZ
and
y
b, = I
P1e

where aj is the discrimination parameter and by is tﬁe difficulty parameter.
Jensema has stated that reasonable estimates will be obtained using
thié\pethod if three assumptions are met: ‘
»
(a) reasonably good estimates of cy are available, -
(b) the preoportion o1 the populatién passing Item i is an
estimate of Py, and
(¢) the item-excluded total test score is a measure of true
ability, 6. .
The quality of the estimates cbtained under these circumstances was checked
using 48 simulation data-sets. The correlation between the true values and
the estimates of discriminaticn and difficulty parameters for the procedure
were found to be 0.798 and (1.963 respectively. The corresponding values
for the maximum likelihood procedure were 0.863 and (0.971. Thus Jensema
(1976) concludes that the estimates 'which were inexpensive to calculate
were surprisingly accurate.'" Sample sizes from 250 to 2,000 using 25 to

100 items: were used for the study. -5
‘ Summérz All told, seven simplé logistic and six three-parameter

logistic procedures were identified'for calibrating items. Other procedures
available for two parameter models and normal ogive models are not included
in the review. The seven simple logistic procedures include (a) Rasch's
(1960) original graphic method for estimating parameters, (b) Lrooks' (1964)
mocification of Rasch's method based on regression techniques, (c) the

‘unconditional maximum likelihood procedure developed by Wright and Pancha-

pakesan (1969), (d) the fully conditicnal maximum likelihoed procedure
developed by Andersen (1973), (e) the inconplete conditional developed by
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Wright and Douglas (1977a), (f) the approximation procedure developed by
Wright and Douglas (1977b), and (g) the empirical Bayes point estimation
developed by Meredith and Kearns (1973).

0f these seven procedures, only three need be given serious consider-
ation for use in calibrating items for tailored testing. The procedures
developed by Rasch and Brooks have been largely supplanted by the newer
procedures and are only of interest historically. The approximation
procedure is designed for applications where limited computer resources
are available, and therefore, should not be in consideration for the
calibration studies considered here. The fully conditional procedure is
too limiting in the small size of item pools and long computation time
required. After eliminating these procedures from consideration, the
unconditional procedure, incomplete conditional, and empirical Bayes
procedure are left.

0f these three, the unconditional procedure seems to be the technique
of choice for item calibration. Its only drawback is the slight
inconsistency of its estimates, which can easily be corrected. The
incomplete conditional procedure is 1imited by its constraints on test
length, and no results are available on “applications of the empirical
Bayes procedure. Also, the empirical Bayes procedure is mainly concerned
with ability estimation. Thus, for the purposes of the regearch repor@ed
here, the unconditional maximum likelihood procedure will be used. '

The si: three parameter logistic procedures include (a) thru (c)
the three versions of the maximum likelihood procedure developed by
Lord (1968), Wingersky & Lord (1973), and Wood, Wingersky & Lord (1976),
(d) the nomographic procedure developed by Urry (1974), (e) the anciilary
procedure developed by Urry (1975), and (f) the approximation procedure
presented by Jensema (1976). Of these six procedures, the choice clearly
falls between two. The early versions of the maximum likelihood procedure
have been supplanted by an improved version making their use undesirable.
Also, the nomographic and approximation techniques are clearly of lesser
accuracy, leaving only the LOGIST procedure and Urry's ancillary estimation
procedure. Of these two, the LOGIST procedure has been chosen for use
here to avoid the assunption of a normal distribution of ability for the
Bayesian modal estimates in the ancillary procedure. Although this
assumption does not carry serious implications, the more generalizable
procedure is preferred for the comparison to be conducted here,

-

Factors Affecting Item Calibration

Although the two calibration procedures selected for the research
reported here were chosen because of their capabilities for arriving
at accurate parameter estimates, neither of them will operate properly




.
Fog

[E7EE

A,
¥

LY s R ARG B
c -

VAN

Sty s
Ak S E

47
EN

R W e R,
‘e

. under all circumstances.

'reSponses.

' However, with the application of the latent trait models to achievement
“”tests, multidimensionality may become more of an issue,

’ “"r Tor

fnall\doal with the robustness of the simple logistic model to violations
. of .the unidimensional agsumption.
" indludés the two and three parameter models, and there they are

_Hambleton' (1969)

. and, the number of rejected items was noted.

. logistic models were applied to the Verbal and Mathematics Sections of

-16-

Both assume that the test being analyzed is
unidimensional and that an adequate sample of observations is available.
The\simple logistic model also assumes that discrimination is constant
for. all items, and that guessing does not have an effect on the item
The research into the effects of these variables will now
be- summarized with the goal of developing recommendations for the |
application of the methods.

Effecte of Multivariate Test Data Despite the fact that the unidimen-
sionality of the complete latent space is one of the basic assumptions
of the latent trait models (Lord & Novick, 1968) and that the multi-
dimensionality of tests is commonly used as an explanation for lack .
of fit (ie. Keifer i Bramble, 1974), oniy -four studies could be
identified that researched the effects of the factorial complexity of
tests on item calibration. The lack of research is probably due to the
common use of latent trait models with aptitude tests which can easily
be constructed to contain a dominant first factor. When the first factor
.accounts for a moderate amount of the test variance, the latent trait
models are felt to operate fairly well (Hambleton & Traub, 1973).

>

"i' The four studies that have been found in the literature search
Only the* study by Hambleton (1969)

secoridary. to the major thrust of the research. The first of the studies
looking into the effects of violating the assumption was done by

In the study, he embedded either one or five items
‘measuring a" second factor in 15 or 30 item simulated unifactor tests.
That is, if a 15 item test were used, one item’ ‘would measure a second
Zactor while the other 14 would measure the first factor. Goodness of
fit of the simulated tests was then determined using a chi-square test

. The results of this study showed that in all four cases the overall
tests were rejected as fitting the simple logistic model on the basis of
the chivsquare tests. Also, with the increase in the number .of items
‘from the second factor, the chi-square values increased, and the number
of items réjected by the model also increased. The conclusion drawn on
the basisof these results was " . . . that the Rasch model is extremely
sensitive .to deyiations from the asgumption that the items of a test
measure only one latent ability (Hambleton, 1969)."

In a second part to Hambleton's study, the one and two-parameter

\the Ontario Scholastic Aptitude Test and the Verbal SectiOﬂ of the o 1

1




i . % . v X P 3 PV AN Y
TS AEIE 275 53 R AR s T Rt it g Hhtrds S
. ~ Ve L e e ] v, 3 RNt 'i"‘- PIRERRE-t-0 ¢ Ny o it

. o AN (AR SRR VU e Y T 0

Tr e KV AESeA Yy
RO

" respectively. Each of "the tests was - COnsidered to have more than one-

.mnderately well, The same pattern occurred in terms of the number of

Scholastic Aptitude'Test. Thece teats were subjected to a principal factor
analysis beforé the latent “trait analyses and were “found to have first
factors accounting fgr 22,17, -31.7% ;and 20.5% of the total variance

factor, but the figgt factors vere: dominant. :

Fit of the mpdels to- these tests ‘'was determined by generating
theoretical frequency distributions ‘from the item calfbration results
and comparing these' dtstributions to the distfibutions obtained from the
administration’ of ‘the: tests. ‘A chi-square statistic was computed -
comparinyg each of*theﬂtheoretical distributions with the actual distri-
butions. In no case was.the fit' ‘between the pairs of distributions good,
a fact that was explained by the lack of unidimensional tests. The test
with the 1argestaﬁirst ‘factor was found to have the smallest chi-square
value, indicdting theé best fit.  Also, the more general two-and three-
parameter models: yielded distributions that fit better than the one
parameter model L -

The second: study "that deals with robustness of the simple logistic
model to’ violations 'of the univariate assumption was done by ‘Reckase (1972).
In this study dne— two~ and three-factor simulated data-sets and one-
and four-factor- multiple-choica tests were analyzed using the model.

As opposed to H%mbleton s (1969) simulated tests-which had one or five
items from another factor embedded in them, the tests used by Reckase
had equal numbers. of items from each factor 'in the two-and three-factor
simulated tests., The simulated tests were thirty items long and 1,000
cases were generated for each test.

S

The fit of the ﬁodel to the tests and to each item was evaluated
in the study using the chi-square test presented in Wright & Panchapakesan
(1969), The results show that the one-factor data fit the model perfectly,
the two~factor data'did not fit at all, and the three~factor data fit

items rejected; one item was rejected from the one-factor test, ten from
the two-factor 'test, and five from the three~factor test. The loadings
of the items on the factors were 0.90 in all cases and no guessing was
present in the data indicating that all results were due to the factor
structure of the test.

The results of the analysis on the three multiple-choice tests
showed that none of the three tests fit the model well. However, the
four~factor test had che poorest overalli fit and had the greatest number
of items rejected. The general lack of fit of these tests was probably
due to the presence of guessing and unequal discrimination not included
in the simulation data. The results of the two analyses show that
multidimensionality does affect the fit of the simple-logistic model,
but the fact that the three-~factor simulation data fit reasonably well
indicated that some robustness to multivariate effects may be present.
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o ) The other two studies that are’ reiated to the thultidic *nsionality
* of tést datd-do not control the factér structiire of the tests as precisely
as the first- .two, The study by Forbes & Ingebo (1975) initially
‘calibrated a seventh grade mathematigs test.and then subjectively divided
the test 'into three 3ubtests labeled computations, problem apnlication,
* and concepts. These subteets weére then calibrated séparately and the
* results compaved to the overall calibration. In anelyzing the data,
it was argued tlat if the difficulty ‘parameters differed oaly by a
constant, there is no need’ to separate the items into homogeneous
rsubteats for analysis., The, results show that the items are ordered in
che sameoway in the subtests and the total'test, and that thie calibrations
yielded almost identickl results. The authors concluded that the simple
logistic model is sufficiently tolerant of violations of the "content
homogeneity" assumption that the subtest breakdovm is not necessary.

The final study to be described relating the factor structure of
a tegt to the latent ttait models was done by kvan & Hamm (1976) . This
study- attacked the problem from anotheét ditection bv determining
whether items selected to fit the-simple logistic model would contain
only one factor. Eight tests from a graduate research methods course
were used for the study. Each of the tests wes analyzed using the ‘
simple logistic model and the principal components factoxr snalytic
method. Items were selected from the tests which (a) were rot rejected
as fitting the simple logistic model, or (b) lvaded highly on the first
principal component. The selected items were again factor analyzed
and size of the first factor was compared. The results showed that the
size of the first factor was only slightly increased over the original
test when items were selected using the simple logistic model, while
factor analysis selected items had a substantially stronger first
fzctor. Thus a simple: logistic model cannot be looked on as a means
of selecting homogeneous subtests. Checking the fit of at least the
simple model to items is not a substitute for factor analysis. |

The results of these studies yield few general conclusions.
Clearly the Hambleton (1969) and Reckase (1972) studies show that the
factor structure of tests affect the Zit of the simple logistic model,
but the effects on more complex models are lacking. The fact that
the simple logistic model fit the three-factor test better than the
two-factor test (Reckase, 1972) also suggests that the relation between
factor structure and fit is not a direct one. Finally, the Ryan & Hamm
(1976) study suggests that checking the fit of the models is not a’ %
substitute for factor analysis. Little about the effects of the . . _...
violation of the unidimensional assumption is clarified by this literature
review and some areas have not even been mentioned (i.e. the value of
ability estimates obtained from multidimensional tests{i{ .

Effect.s of Sample Size Some information concerning.the sample sizes
required for stable calibration has already been presented under the
review of calibration procedures. Wingersky and Lord {1973) suggest

22
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Nc¢ controlled
studies on the effects of gsample size on calibration using the three

parameter logistic model have been found.

Several studies have been done on theneffeCta of sample size on
the stability of the unconditional maximum ‘I{kelihood estimates for the
simple logistic model. Cypress (1972) calibrated a 90 item mathematics
test using 1,200 normally distributed cases for use as a standard for
comparison. She then calibrated the same' test using independent samples
of 1,200, 600, 300, 150, and 75 which also varied on seven levels of

_skewness. Thirty data-sets in all were used. The difficulty and

sbility parameter estimates were then compared to the estimates from
the standard distributicn.

In general, the study gave the expected results. As the sample
size decreased, the standard error of the estimates increased. However,
there is an interaction between the shape of the distribution and the
similarity of the calibration to the standard distribution. The general
conclusion of the study was that

“If . . . intact groups reflect raw score distributions which

d are close to normal, results of the study indicate that groups

as small as 75 may provide good ability estimates. Four groups
consisting of 75 and 150 subjects ranked in the upper six when
compared to the criterion group of 1,200 normally distributed
tests scores. I[n fact, these four groups provided better
estimates . . . than the group of 1,200 with low positive skew
which ranked ninth."

A similar study by Forster (1976) compared calibration results
from samples of 300, 200, 100, and 50 to calibration data from total
samples of 1,478 and 1,808, Two tests were used for the study; &n &n 81
Atem fourth grade mathematics tést, and an 100 item eighth grade reading
test. Correlations between the full sample and reduced sample parameter
estimates were used as a basis for comparison. The largest drop in
correlation was found between the samples of 100 and 50. ,On the basis
of the results, the author concluded " . . . these results give us ,
confidence in field testing with sample sizes of 150 to 200 to detfermine
item difficulty calibrations with reasonable' accuracy.'

A third study (Tinsley & Dawis, 1975) compared the item and ability
calibration results for ten pairs of intact groups rangiag in size from
89 to 630. PFour different tests with from 25 to 60 items were used for
the study. ‘The results show that if samples of over one~hundred are used,
correlations in the high 80's or 90's can be expected between the item
parameter estimates. With less than one-hundred, very low correlations
were obtained. However, the correlations betwsen ability estimates
were found to be uniformly high, reg rdless of sample size.

' R3




o
7
i
.

.
o
%

e

-

-20-

The results of these three studies indicate that samples of a
pinimum of 100-150 are adequate for use of the simple logistic model.
If a minimum of 1,000 is required for maximum likelihood estimates of
the three-parameter model, the simple logistic model will have a clear
advantage in cases where only small samples are available. A second
implication of this research is that item parameters require more cases
for accurate estimation than are required by ability parameters.

The Effects of Item Quality Item quality, for the purposes of this
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research, is defined in terms of the discrimination and guessing
characteristics of the items. Poor quality items are those that are
low in discriminating power or high in guessing. High quality items
have the opposite characteristics. Classroom achievement testing

often uses mediocre quality items for initial tests because of the
short time allocated to test construction, and because the tests are
often modified as the instructional process changes. Thus an important

" congideration in the evaluation of calibration procedures to be used

for achievement tests is the degree to which the .procedures are affected
by this mediocre quality.

Three major ftudies have becn found in the review of the literature
that deal with tHe effects of discrimination and guessing on item
calibration. This is not a complete list, since any study reporting
the calibration of actual test data bears on the generalizability of the
results, but the major findings present in the literature are presented
in these studies. The first of the studies was done by Vanchapakesan °
(1969).. In the study, five, ten, and twenty item tests containing
various numbers of '"bad" items were analyzed using the simple logistic
model. Bad items were items that were lower in discrimination than
the majority of the items on the test. Simulated data with samples
ranging from 100 to 2,000 were used. :

The results of the study showed that items with discrimination
values more than 0.2 below the average for the test can readily be
detected as causing lack of fit. However, thé model could be used
adequately when the variation in the discrimination paraueters ¢f the
items was not too extreme. Extreme in this case is defined as ftems with
discrimination parameters deviating more than 0.2 from the average for
the test. )

Panchapakesan (1969) also looked into the effects of guessing on
the simple logistic model, but not to the same extent as discrimination.
Twenty item simulated tests using a sample of 5,000 cases were used for
the study. Guessing levels of 0.5 and 0.Z were used fo generate the

.simulation data. The results of the study indicated that guessing caused

substantial errors in the calibration of hard items and in the ability
estimates of low ability examinees. However, the effects on the ‘easier
items' and on high ability estimates were negligible.

L 54
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Panchapakesan recommended eliminating the hardest 25% of the items for
calibration purposes when guessing is a factor and only accepting the
ability estimates from the brighter individuals as being reasonably
accurate.

The second study conceruing item quality was done by Hambleton &
Traub (1971). 1In the study, fifteen item tests with four ranges of
discrimination parameters (0.0, 0.20, 0.40, 0.80) and three levels of
guessing parameters (0.00, 0.10, 0.20) were compared on the basis of
information level and relative efficienty using the one-, two-, and three-
parameter logistic models. 1In general, the results came out as one would
expect; the three-parameter model was found to be most informative, the
two~parameter model next most informative, and the one-~parameter model
least informative. However, when guessing was present, the one~parameter
model was better than the two-parameter model for low ability levels.

When no guessing was assumed, the simple logfstic model maintained high
relative efficiency until the range of discrimination became large (0.80).
On the basis of these results, the three~parameter model seems to bé the
recommended procedure, although sample size considerations did not enter
into this study.

In the third study, Dinero & Haertel (1976) manipulated the variance

. of the discrimination parameters of 30 item simulated tests and compared

the ability estimates from the simple logistic model with -those from the
two-parameter logistic model. Six different variances were used (9.0,
0.05, 0.10, 0.15, 0.20, 0.25) along with three different shapes for the

discrimination parameter distributions (normal, uniform, and positively

skewed). The uniform distribution was found to give the worst resuits

overall. However, the lowest correlaticn between ability estimates was
0.8069 prompting the authors to conclude that the simple logistic model
was robust to variations in discrimination. .

In summary, the presence of guessing and excessive variation in the
discrimination parameters affect the calibration of the one-parameter
model to some extent, leading to recommendations to exclude low scoring
cases and to select items on discrimination. The two parameter model
seems to be affected more by guessing than the one-parametgr model.
Robustness to these factors is not a consideration with the three-

_'parameter model since each of the’ parameters is estimated. Therefore,

it has assumed the pouition of the standard by which the other techniques

arj/?udged. .
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The research presented in this report is organized intc three major
components: (a) effects of multivariate test data, (b) effects of sample
size, and (c) effects of item quality. Within each of these research
comporents the two latent trait models, one-parameter and three—parameter
logistic, are compared on their ability to estimate item and ability
parameters. In addition, the two prucedures are compared on the .basis of
cost and computer time required. However, before describing the specific
analyses used to compate the procedures on these criteria, ianformation
concerning the data-sets and computer programs used in this research
effort will be presented. v

-

Data-Sets

The data-sets used for the research reported here are briefly described
in Table 1 and the abbreviations used for them throughout this paper are
presented. The data-sets are of three major types: (a) the results of
the administration of standardized ability tests, (b) the results of the
administration of college ~ourse final examinations, and (c) data generated
to. simulate tests with various factor structures. The standardized test
results were .acquired through the cooperation of the Missouri Statewide
Resulfs on the Missouri School and College Ability Tests

werg obtained tor two school years, 1974-75. and 1975-76. The samples
obtained were very large (57,800 in one case and 65,600 in the other),
‘necessitating sampling from the total number to reduce the cost of the
analyses. A sample size of 3,000 was selected since it was the.maximum
sample usable with the LOGIST program without modifications. This number
was selected from the full sample using a systematic sampling procedure

as there was no pattern to the original data. Both the erbal and
quntitative subtests of each form were obtained from each sampling unit:,
) The final examinations from the undergraduaée measurement course
Introduction to Educational ]
Measurement and Evaluation. This course covers basic measurement thoory
and_practice for prospective teachers at the Yniversity of Missouri-

Colimbia. The data were collected from Fall 1975 to Spring 1977 from ’
regular course examinations. Each of these examinations was constructed
inderendently from a large item pool according to content specifications.
All of the examinations, both the classroom and standardized ctests, contained’
fifty multiple-choice items with four and five options respectively.

In order to gain greater control over the characteristics of the data,
These were generated to match
various factor loading matrices using the usual linear factor analysis
model. The simulation procedure generated z-scores using a weighted sum

of normal random numbers and then dichotomized them to yield the proportion

v
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Table 1
Description of Data-Sets¥*
— = :
Sample
Test Name Abbreviation Size Description

1. Missouri School'and MSCATY5 3,087 Sy umatic sample from
‘College Ability Tests 57,300 cases from
Verbal/1975 Missouri Statewide

- Testing Program 1974~
1975. SCAT Series II
Form 2B.

2. Missouri School and MSCATQS 3,087 Systematic sample from
College Ability Tests 57,800 cases from
.Quantitative/1975 Missouri Statewide

: ' Testing Program 1974-
1975. SCAT Series II
Form 2B.

3. Missouri School and MSCATVS 3,126 Systematic sample from
College Ability Tests 65,600 cases from
Verbal/1976 ' Missouri Statewide

Testing Program 1975-
1976. SCAT Series II
Form 2ZB.

4, Missouri School and MSCATQ6 3,126 Systematic sample from
College Ability Tests 65,600 cases from
Quantitative/1976 Missouri Statewide

Testing Program 1975-
1976. SCAT Series 1I
Form 23.

5. Exam on Standardized ST1075 208 Undergraduate course

Testing final exam administered
in October 1975.

£6. Exam on Standardized ST0576 ~181  Undergraduate course

Testing. final exam administered
- in May 1976.
7. Exam on Standardized ST1076 176 Undergraduate course

Testing

final exam adaministered
in QOctober 1976.

%A1l tests are 50 items in length.
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Table 1 (Continued)

Description of Data-Sets

& ) '

Abbreviation

Sample

Test Name Size

Description

N 10,

LD n Nt 14 & g bR
< A A

11.

13.

B

Exam on Standardized ST3-577 . 312

Testing

One factor rectangular 150AR 1,000

* simulation data.

Ed

Two factor normal 250AN

simulation data.

1,000

Two factor rectangular 250AR 1,000

simulation data.

A}

Two factor .5 1,000

250A5
simulation data. ‘

Wine factor Spearman 950ANS 1,000

simulation data.

Nine factor independent 950AN9 1,000
.9 loading simulation

data.

Undergraduate course
final exam administered
to two sections of the
course in March and May
1976.

‘One factor with loadings
of .9, rectangular
distribution of diffi-
culties. .

Loadings of .9 and .0
randomly distributed on
two factors, normal
distribution of diffi- .
culties.

Loadings of .9 and .0
randomly distributed on
two factors, rectangular
distribution of diffi-
culties.

Loadings of .9 and .0
randomly distributed on
two factors. All items
.5 difficulty

One factor .7 loadings
for all items. Eight
factors .6 loadings
randomly distributed
over items. Normal dis-
ribution of difficulties

Items randomly distri-
buted to nine factors
with .9 loadings. Normal
distribution of

~ difficulties.

28
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Table 1 (Continued)

Description of Data-Sets

Sample
Test Name ‘ Abbreviation SiEaj Description

15. Nine factor independent 950AN3 1,000 Items randomly distri-
.3 loading simulatiom buted to nine factors
data. with .3 loadings. Normal

distribution of
difficulties.

16. Five factor independent 550AN7 1,000 Items randomly distri-
.7 loading simulation buted to five factors
data. 3 with .7 loadings. Normal

- . distribution of
difficulties.

of correct and incorrect respenses specified by difficulty imdices. These
data-sets were produced without a guessing component, allowing a smaller
sample size than the live testing data-sets. A sample of 1,000 cases, the
minimum suggested by Wingersky and- Lord (1973) for calibration, was generated
for each of the eight simulated tests.

Four levels of factorial complexity were used in generating these data-sets:
one—factor, two-factor, five-factor, and nine-factor. Of the eight data-sets,
q\\three were generated to have nine factors to match the empirically determined
factor structure for the classroom tests. Th~ size of the factor loadings and
distribution of difficulties were also varied for the simulated tests. Normal,
rectangular and constant distributions of difficulties were used, although no
attempt was made to include all pessible combinations. The distribution of
difficulties referred to here is based on the proportion correct index. //////

Along with these data-sets, seven other samples were obtained for MSCATV6
to determine sample size effects. Systematic sampling was used, yielding
samples of 2,929, 2,146, 1,494, 1,090, 748, 375, and 149, Care was taken to
insure that no case occurred in more than one sample.

Computer Programs

Two computer programs are of major importance to this study. They are the
maximum likelihood estimation procedures for the item and ability parameters
for the one and three parameter logistic models. Since the comparisons
between the two models are dependent upon the programs used for calibration,
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it is important that the best evzilable procedures be used. The programs
were selected for this research on the basis of the review of the literature
reported in the first part of this report. On that basis the unconditional-
maximum likelihood pcocedure developed by Wright & Panchapakesan (1969)

was selected for the one-parameter logistic model, and the quasi-maximum
likelihood procedure for use with omitted responses developed by Wood,
Wingersky, and Lord (1976) was selected for the three-parameter model.

The actual program used for the one-parameter model was obtained from Jerry
Durovic of the New York Civil Service Commission. The program was
extensively modified by the author for greater efficiency and to correct
some minor errors. The three parameter program was obtained from Marilyn
Wingersky at the Educational Testing Service.

The program that generates the multivariate simulation data was written
by the author for an earlier study using the random number generators from
the International Mathematical & Statistical Libraries Package (1975). All
other analyses were performed using the SPSS (Nie, Hull, Jenkins, Steinbrunner
& Bent, 1975) and SAS (Barr, Goodnight, Sall, & Helwig, }976) packages.

Effects of Multivariate Test Data

The purpose of the research reported here is to evaluate the one- and
three-parameter logistic models for use in tailored achievement testing.
Since the first step in setting up a tailovred testing procedure is item
calibration, this study first concentrates on that facet of the models -
that is, determining item parameters. A complication in this matter is
the fact that achievement tests tend to be multidimensjonal, violating the
assumptions of bath models. The evaluation of the item calibration
procedures was therefore performed on the full set of 16 data~sets described
earlier so that the effects of various factor structures could be ascertained.

The major quality desired in a calibration procedure is the ability
to accurately estimate the item parameters so that the interaction of a
person with the test is descrived with a minimum of error. The =2bility
of each of the models to explai. the interaction of the persons and the
items was determined by comparing the predicted item response for a person
with the actual item response. The predicted response is given by the
probability of a correct response to the item for the ability level and is
obtained from the appropriate model. The actual statistic used was obtained
from the mean squared deviation of the obtained response from the expected -
response. The formula for the statistic is given by

MSD, & — (21)
1

30.
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where uy 4 is the response to Item i by Person j, Pii is the probability
of a eorrect response to Item i by Person j, and N is the number %f
people. The values of this statistic vary from zero for perfect
prediction with a perfectly discriminating item; to .25 for an item with
zero discrimination; to 1.0 for an item that predicts wrong responses
when they are in fact correct. This statistic is used instead of the
common comparison between theoretical and obtained item characteristic
curves, because the latter fit statistic differs depending on the
interval size used to approximate the empirical item cliaracteristic
curves.

Comparisons between the models were perform d on the MSD statistic
using an ANOVA since the obtained values were approximately normally
distributed. Thus, although the sampling distribution of this statistic
was” unknown, hypotheses cou%d still be tested because only comparative

* information was of interest.

Along with the comparative information on item calibration from the
two models, information on the factors controlling item calibration was
desired. One statistic hypothesized to have some effect on the calibration
procedures was the magnitude of the first ‘eigenvalue of the tests. Te
determine if a relationship existed, the mean discrimination estimates
from the 3PL model, the standard deviation of the difficulty estimates
from the 3PL model, the standard deviation of easiness estimates from
the 1PL model, the 1lPL mean probability of fit, and the MSD statistic
were plotted against the first eigenvalue. Correlations were also
computed between the eigenvalues and these statistics ‘across data-sets
and the corresponding regression lines were obtained.

“ b

The interrelationshibs between the item parameters and the factor
loadings used to generate the simulation data also yielded information
about the test characteristics controlling the item calibration. To
discover the relationships, the parameters were intercorrelated and later
factor analyzed for summary purposes and to identify explanatory constructs.
The live testing data and the simulated tests were analyzed separately
using this procedure to determine if the simulated data findings were
reproducible.

Once the qdélity of the item calibration data has been determined,
the ability estimates based on the calibrated item pool become of
interest. The questions of major importance concern the relaticnship
of the ability estimates to the item responses, the relationship to
outside criteria, and the relationship to factor scores. The relation-
ships discovered among these variables will, in effect, define the
construct being estimated by the latent trait models. Simple correlational
techniques were used to determine the relationships between the various
types of ability estimates. As with the study of item parameter
estimates, all sixteen data-sets were used for these analyses. To
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evaluate the relationship between the item responses and the ability
estimates, the multiple correlations between the full set of item scores
and the ability estimates for each of the two models’ were computed.

The correlations were then compared using a t-test to determine which
model explained more of the variance of the responses. Another analysis
correlated the ability estimates from the two models with outside criterion
measures available for the students from the wmdergraduate measurement
courses. The available‘critérion included grades-on other course exams.
These correlations were also compared to determine which model gave
ability estimates that were better predictors. Only three of the live
testing data-sets could be included for this. part of the study.

Effects of sample size

Another important questicn that has only been touched upon in the
research literature is the sample size required for accurate estimation
of parameters. To further explore the sample size limitations of the
models, the seven subsamples of the MSCATV6 data-set were used. Parameter
estimates were obtained from each of these samples and the results compared
to the calibration based.on 2,939 cases, using a squarged deviation
statistic, That is, for each of the item and ability parameters from
the two models, the smaller sample estimates were’ subtracted from the
large sample values, the difference squared, and the “4fasults’summed.
These estimates of squared deviations from the large sample estimates
were then plotted against sample size in an attempt to identify the
minimun sample size that yields adequate parameter estimates. Analysis
of variance -techniques were used to analyze the data.

-

Effect of item quality

- Analyses were also performed on the data to determine what factors
contributed to lack of fit of the models. To do this the MSD statistic
presented earlier was correlated with the parameter estimates, traditional
item analysis statistics, and factor analysis loadings. The purpose of
the analysis was to discover what types of item should be eliminated fron

.calibration studies, A similar analysis was done on the probability of
fit obtained from the chi-souare goodness of fit test used with the simple
logistic model, These correlations were then factor anlayzed to summarize
the results. ' :

The final analysis performed on the two models wss a comparison of
computation cost and computer time. Although the restlts obtained from
this analysis are computer specific, the proportions between the obtained
values should generalize to other computer systems. These data will be
required in future cost effectiveness studies og tailored testing.

L
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¢ Results

Summary statistics on the sixteen data-sets used in this study are
presented_in Table 2. Included for each test are: (a) the mean, (b) the
standard d®viation, (c¢) the KR-20 reliability, (d) the number of factors
used to generate the data for the simulation data-sets, (e) the number of
factors from the principal components analysis on phi-coefficients, (f) the
first eigenvalue from the principal components analysis, (g) the number of
factors from the principal factor analysis on phi-coefficients, (h) the
first eigenvalue from the principal factor amalysis, (i) the number of
- factors from the principal component analysis of tetrachoric correlations,
T ’ (3) the first eigenvalue from the principal component analysis, (k) the

sample size, (1) the CPU time for the simple logistic amalysis, and (m) the

CPU time for the three parameter logistic analysis. The three types of

factor analysis were included in the study since the analysis of

tetrachoric correlations sometimes yield non-Grammian matrices, and the

analysis of phi-coefficients often yield difficulty factors. By using

all three methods, it was hoped that the results of this study would be
Hmoré generalizable.

Note that the principal factor analysis technique on phi-coefficients
gave a fairly close approximation to the number of factors used to
generate the data. Also, surprisingly, the KR-20 reliabilities are fairly
high for all except the 950AN3 simulation data-set despite the fact that
most of them are multidimensional. Other points of interest are that the
classroom tests are easier than all of the others, and the three-parameter
logistic program required substantially more computer time than the simple
logistic program. The data reported in Table 1 will be used in meny of
the subsequenf analyses.

Effects of Multivariate Test Data

To evaluate the effects of multivariate data on the two latent trait
‘models, six analyses were performed: (a) the fit of the models to the
. data was determined, (b) the relationships between the first eigenvalue of
the tests and various parameters of the tests were determined, (c) the
‘relations between the item parameters and the item factor loadings were
determined, (d) the relationships between the ability estimates and the
factor scores were determined, (e) the relations between the item responses
and ability estimates were determined, and (f) the relations between ability
estimates and criterion measures were determined. The two procedures
were compared in five of the six analyses. The sixth gives descriptive
dzta only.

-“

Goodness of fit of the models Deviations of the expected response derived

from the models and the obtained response made by a person to an item were
determined using Equation 21 given earlier. Using this equation, deviations
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"Summary Statistics on the Sixteen Data-Sets

Statistic

Teét Identifier

e

MSCATVS MSCATQS MSCATV6 MSCATQS  ST1075  STO576 . ST1076
 Maan 59.02  28.52  20.14  28.67  35.00 35,00  34.00
Standard ﬁeviation 9,57 9.92 9.22 9.40 4,10 5.00 5.30
KR~-20 0.91 0.91 0.90 0.90 0.56 0.66 0.71
E;pected # Factors - - - - - - -
" # Principal Component
Factors® 8 8 9 9 . 21 21 20
"First Eigenvalue 9,51 10.21 8.90 9.30 3.05 3.35 4,35
-# Principal Factor \
Factors “ 2 3 2 3 9 9 9
First Eigenvalue 8.78 9.53 8.15 8,60 2.55 2.80 3.85
# Principal Component J
Tet Factors 8 8 8 9 Y22 21 20
First Eigenvalue 15,64 16,74 14,70 15.30 7.20 5.60 7.70
Sample Size ¢ 3087 3087 3126 3126 ~ 208 181 176
1PL CPU Tide (Min) ¢ 0.36 0.36 0.37 0.37 0.51°  0.46°  0.45°
3PL CPU Time (Min) 4,19 4,80 4.49. 5.22 1.20 1.11 1.10

aThe number of factors for all factor analyses is based on the eigenvalue greater than 1.0 rule.

These analyses were run off of cards and réquired scoring of tests.
off of tape and had been previously scored.

All other analyae§ were run

_OE_
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Table 2 (Continued)
‘Summary Statistics on the Sixteen Data-Sets . K
Test Iffentifier .

Statistic ST3-577 150AR 250AN 250AR 25045 950ANS 950AN9 950AN3 550AN7
5 Mean . 32,92 - 25,21 25,23 25,80 24,98  24.84  25.33  25.00 24,93
Standard Deviation  _  5.47 13.22 12,98 9,56 13,93  13.50 6.46  _3.81 6.69
L KR-20 s 0.69 0.97 0.95 0.93 0.96 0,96 0.74 - . 0.22 0.76
v Expected f. Factors . 1 2 2 2 9. 9 9 5
: . # Principal Component \ ‘ 1
Factors? . 21 4 4 7 2 9- ‘9 22 3 bt
: . : .
’, . First Eigenvalu€ 3.42 21.45 14,70 10.86 15.67 15.90 4.10 1.55 4,27

# Principal Factor ‘ . .

Factors 5 3 3 4 2 . 9 9 22 6

First Eigenvalue 2.80 20,15 14,3 10,44 15,28 15.45 3.65 0.80C 3.61
) # Principal Component ; ' )
h Tet Factors , 21 4 V.4 6 2 9 9 22 6

First Bigenvalue 5.43 40,70 21,65 21,61 20.69 24,60 5.65 1.95 6.20

Sample S%ze 312 100¢ 1000 1000, 1000 1000 1000 1000 1000

1PL CPU Time (Min) 0.15 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

3PL C?U Time. (Min) . - 1.23 3.60 3.32 3,31 3.52 2,97 3.21 3.12 3.38

e

-

37
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from fit for the models were determined for each item on each test. Thus
1, 600 statistics were computed overall (16 tests:X 2 models X 50 items).
These were then used as the dependent measures in an analysis of variance
to detexmine if the one-parameter or the three-parameter model fit the
-data better. The mean squared deviation from fit for the two models for
) the sixteen data-sets is given in Table 3 along with the analysis of 1
. variance summary table for the two wdy analysis design with repeated :
measures on one dimensicn.

The results show that the three-parameter model fits eignificantly
better than the one-parameter model, although the difference in the overall
means is only .004, However, for every data-set the average deviation -

. from fit was smaller for the thres-parameter model than for the one- -
a parameter model. The deviations from fit were also found to be significantly
different across tests. The 150AR data-set was fit best by the models as
would be expected and the 950AN3 had the worst fit, also as expected. No
interaction effect was found in the data.

To further rank the tests in terms of the fit of the medels, the
Newman-Keuls post hoc comparison procedure was used to determine if
there were significant differences in the individual test means. The’
results of this analysis are presented at the bottom of Table 3. As can
be seen from the results presented there, the 150AR data-set is fit by the
models significantly better than any of the other tests. This is the one
simulated test that meets all of the assumptions of both models. It
contains only one factor, all of the items are equally discriminating,
and no guessing is present.

The 250AR data-set has the next best fit for the models.’ It has two
factors, a wide range of item difficulties, and no guessing. Although the
fit for this test is significantly worse than 150AR, it is significantly
better than all but one cf the other tests. The majority of the other data-
sets are fit about equally well by the two models. The best of these is
ST1075, one of the classroom tests, and the worst is S$T3-577, also one of
the classroom tests. The standard’zed tests and the other two factor data- |
sets are included in this group. , .

Ac the poor fitting end of the continuum are three sets of simulation
data: S550AN7, 950ANY9, and 950AN3, All of these tests have a relatively
large number of independent factors. Data-set 950AN3 is the worst fitting
of the tests, having a MSD statistic very close to the value of .25 expected
when all items have zero discrimination. This test has low loadings (.3)
on the nine independent factors.

The trend of this analysis suggests that the multidimensionality of
: tests is a definite factor in the fit of the two models. The three-paramete~r
‘ logistic model handles this deviation from the assumptions significantly
better than the one-parameter model, but the ordering of the effect is the
‘same, as is shown by the lack of a significant interaction.
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Table 3

Souared Deviations from the Two Models

> for the Sixteen Data-Sets
One Parameter Three Parameter
Test Log}stic Logistic Test Means
<

1. MSCATVS .169 .166 .167

2, MSCATQS .164 .160 .162

3. MSCATV6 .169 .166 .167

4. MSCATQ6 .166 .161 © L1633

5. ST1075 144 .138 - .141

6. ST0376 167 .165 .166

7. ST1076 ’ .159 . .154 .156

8. ST3-577 .184 .182 .183

9. 150AR . .068 .067 .068
10. 250AN .162 .153 .158
11. 250AR 122 115 .118
12. 250A5 - .185 - .176 .180
13. 950ANS .156 .156 .156
14. 950AN9 .211 .204 .208
~15. 950AN3 .223 .222 .222
16. 550AN7 .210 .206 .208
Model Means ,166 .162 .164

Anova Table
Source Sum of Squares d.f. Mean Square F - Sdiguificance
Tests 1,995 15 .133 31.667 .001
Items within . )
tests 3.221 784 .004

Models ) .007 1 .007 14.684 .001
Tests X Models .003 15 .0002 414
Models A\Iltems .

within tests .355 784 .0005 -

- Post Hoc Comparisons Using Newman-Keuls Test

Poor FIT -~ Test Good FIT

15. 14. 16. 8. 12. 1. 3. 6. 4. 2. 10. 7. 13. 5. 11. 9.

i
1

A
b
F

]
1

—

)

different from each other

‘39

Note: Those tests that are not underiined by the same line are significantly
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Relationship to eigenvalues To further study the relationship between
factorial complexity und goodness of fit, the first tetrachoric eigenvalue
.~ from the principal component analysis was plctted agaipst the MSD statistic
for each test. Fizure 1 shows this relationsiiip along with the regression
line and correlation. Thc correlation between these two variables is

-0. 791 which is significant at the p < .0005- level, indicating that about
63% of the variation in fit can be accounted fcr by variation in the size
of the first factor of a test.

An analysis of the scatter plot shown in Figure 1 shows that the three
points that are below the regression line at the left of the graph are
from three of the classroom tests. These tests were easier than the rest,
suggesting that the difficulty of the tests might be a second variable
explaining variation in the fit of the models to the test. To check this
hypothesis, the multiple correlation among the average difficulty of the
tests, the first eigenvalues, and the MSD statistic was computed, yielding
a value of .935, a significant increase over the .791 obtained above.
“Figure 2 gives the scatter plot of the predicted MSD statistic, ohtained
from the average di.ficulty and the eigenvalue, and the actual MSD statistic.
The three easy classroom tests have now moved closer to the expected
regrcession line.
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Figure 1 : . Relationship of the MSD Value
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A second indication of the effects of multivariate data on the fit
a of the one-parameter logistic model is given by the relationship between
the probability of fit obtained from the chi-square test in the Wright &
Panchapakesan (1969) calibration program and the first eigenvalue. The
plot of the probability of fit against the elgenvalue is given in Figure 3
<¢/ along with the regression line. . The relationship yields a correlation
of .40, which is not significant at the .05 level. Further discussions of
the usefulness of this probability of fit measure will be given later.
N . x
The effect of thé size of the first eigenvalue on the operations of
t‘ these twoc models was further analyzed to determine its relationship with
several other statistics that define characteristics of the models.
These statistics include the average 3PL discrimination parameter /
estimates, the standard deviation of the 3PL difficulty parameter
estimates, and thé standard deyiation of the 1PL easiness parameter
-estimates. ‘ '
R - -~ /

The plot of the average discrimination parameter from the three-
parameter logistic model against the first tetrachoric eigenvalue is
given in Figure 4 aleng with the least squares regression line. .Also
included on the graph is the exzected relationship between the eigenvalues
and~ttfe average discrimination when 21l items nave the same loading on
the first factor. This relationship is given by the formula

R e ey
R S R

(4

RO T A g0 kg T E LN P TR e ”ﬁ«\"‘?‘r"’, Fara g fher

e (22)

where E is the first eigenvalue, N is the number of items on the test,
and 3@ is the average discrimination parameter. This formula can be derived
directly from that given in lLord & Novick (1968, Equation 16.10.7) by

setting Pg = [E E . This substitution assumes the normal ogive model
N
. rather than the locgistic, as is_used here. But since the two models yield
d*i very similar results, this equa*ion should give approximation.
As can be seen from Figure 4, the first eigenvalues and the average
discrimination have & strong relatjonship, yielding a correlation of .97.

There is also a fairly close correspondence between the theoretical curve S

and the obtained data. None of these results are particularly exciting - ~

they merely confirm theoxetical expectations. However, they do give . .\
. guidelines as to the requited strength of the first factor required to

obtain a particular average discrimination. For example, 1ffan average
discrimination of .8 is desired, Equation 22 yields a necessary first ,
eigenéﬁlue of 19.51 for a fifty item test, i.e. the first factor should
, - account for 39% of ‘the vasiance. , R

<




Figure 3

Relationship of the Chi Square
Probability of Fit to the
+ _ First Eigenvalue
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- f%e plot of the first eigenvalues against the standard deviation of 1
¢«  the d1fficulty parameters for the three-parameter légistic model is given |
in Figure 5. ™he standard deviation of the fit statistic is an indication
of the stability of parameter ,estimates obtained by the calibration -
program. When convergence on estimates is poor, extreme values of the i
= difficulty parameters generally appear in the calibration results, inflating
the standard deviation. The correlation between the eigenvalues and the J
standard deviations is -.47 which is significant at the .05 level. The
results generally show that when the eigenvalues are small, the results of '
the calibration tend to be unstable, giving larger values for the standard .
deviation of the difficulty parameters. The high variability in the . |
lower eigenvalue range, however, indicates that caution is required in o
specifying any general rule. Several curvilinear functions were also
checked for fit or this data, but none improved updn the simple linear
regression line. ’

The scatter plot and regression line for the first eigenvalue against
the standard deviation of the easiness parameters from the one-parameter
logistic model are given in Figure 6. The standard deviation of the
easiness values gives an indicatior of change of the ability scale of the

] model, usually brought about by aifferences in the average discrimination
= *  of the items (Baker, 1977). The correlation between the two variables
) is .62, indicating that as the size of the first eigenvalue increases,
the spread of the parameter estimates increases. Thus, when the first |
eigenvalue is large, indicating high discrimination for the items, the
items are widely spread or the ability scale shrinks. This is true even
if the proportion correct for each item remains the same indicating that
the size of the ability scale units has changed.

Relationship between item parameters The analysis up to this point has

shown that there is a relationship between the factorial complexity of

the data and the operation of the two latent trait models. These data

do not show specifically what is being measured by the mbdels under

multivariate conditions. Therefore, several other analyses were done

to determine the specific factor being evaluated by each of the models.

These include a comparison between the factor loadings and the item

statistics for the two models, and a comparison between the factor scores
. dnd the ability estimates.

The first data-set analyzed in this way is 250AN. This data-set was
chosen for initial analysis since it js the simplest wultifactor data-set
available, allowing & clear;indication of the relationship among the
various parameters. Table éééhows the loadings used to generate this

data-set along with the 3PL discrimination parameter estimates, the 1PL

probability of fit, the 1PL and 3PL MSD statistics; and the results of

b the factor analysis of this data. Table 5 gives the correlations between
the variables presented in Table 4. \
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Table 4
1tem Statistics for the 250AN Data-Set

Theoretical Varimax Principal <
’ .Loadings 3PL 1prL Factors . Component
Item I 11 a MSD Fit MSD 1 II Factor 1
1 9 0 02 111 00 096 95 02 76
2 0 9 66 102 00 152 -07 90 ° 50
3 + 0 9 133 90 -+ 01 155 00 88 . 54
4 9 0 08 191 17 145 89 08/ 75
5 9 0 11 204 02 155 ) 03. 74
6 0 9 186 84 48 148 10 90 64 '
7 0 9 10 89 42 160 03 - 91 59
8 9 0 10 218 - 22 165 91" 02 73
9 9 0 192 224 00 173 91 -03 70
1v 0 9 176 87 57 165 02 91 58
11 0 9 10 92 54 167 03 90 58
12 9 0 183 228 04 172 96 00 71 .
13 0 9 08 92 29 166 046 91 59
14 9 0 12 232 21 173 91 -01 71
15 9 0 165 234 52 168 °~ 92 02 73
16 0 9 178 99 92 176 -01 90 55
i7 0 9 13 94 83 167 04" 91 59
18 9 0 13 233 89 17C 90 05 74
19 .0 9 190 91 78 167 03 92 59
20 - 9 0 14 236 97 172 92 01 73
21 9 0 15 233 94 169 92 03 74
22 0 9 186 95 22 169 03 91 59
23 Q. 9 184 97 35 176 -01 91 55
24 & 0 14 235 67 173 90 02 72
25 0 9 197. 93 25 173 -01 92 56
26 9 0 13 237 29 174 91 -01 71
27 9 0 12 238 20 175 92 -02 71
28 0 9 183 95 92 168 04 91 59
29 ‘9 0 14 234 98 168 91 04 75 .
30 0 9 210 89 40 170 0L 92 57 -
31 0 9 179 97 61 162 08 90 62
32 9 0 14 234 37 169 93 01 74
33 9 0 12 235 84 175 92 -01 72
34 0 9 210 91 93 169 02 91 58
35 9 0 15 230 22 164 91 05 75
36 0 9 186 95 70 173 -01 91 55
37 0 9 210 81 11 159 05 92 61
38 9 0 13 228 12 170 92 -00 73 .
39 0 9 210 84 15 153 00 93 58
40 9 0 12 226 12 174 91 -01 71
41 9 0 15 223 19 167 91 04 74
42 0 9 180 104 37 166 03 89 57
43 0 9 210 89 09 165 00 91 56
44 9 0 15 213 64 159 90 06 74
45 0 9 210 92 12 163 -02 90 54
4% 9 0 15 199 . ,21 157 92 01 73
47 9 0 14 191 ~ 20 151 90 03 73
48 0 g 193 78 26 140 04 89 58
49, 0 9 210 81 01 143 -0l 89 54
50 9 0 14 102 -00 096 96 04 78

Note: All *alues presented without decimal points.
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: ‘ Table 5

Correlations between Factor Loadings,
1PL Fit, MSD Statistics, and 3PL Discrimination for 250AN

ES

e < Variable %, 1 2 3 4 s 6 7 8 9

oo : =

. 1. Factor 1° ©-100 -97 93 - - 100 -100 96 °

& . 2. Factor 2° : 97 -93 -. - =100 100 -96

o 3. 3PL Disc 90 - - -96 97 90

5 4. 3PL MSD -~ 29 91 93 84

N 5. 1PL Fit ‘ 9. - - -

?ﬂ -

§ 6. 1PL MSD n - - -

¢ . 7. Varimax 1 : -100 97
8. Varimax 2 -95 i

9. Principal
P Component 1

i Note: All correlations are presented without decimal points. Only
- significant correlations are presented.

#These factors are based on theoretical loadings.

In looking at Table 4, notice first the relationship between.the
3PL discrimination parameter estimates and the theoretical loadings on
Factor 1I. Without exception, the low discrimination estimates correspond
to the zero loadings and the high discrimination values correspond to )
the high loadings. The correlation between these values is .97, confirming
the subjective evaluation of the relationship. This rel..tionship indicates
that the 3PL model is differentiating among cases on the second factor
of this simulated data-set. The empirically obtained loadings also yield
this same result. Both verify the properties of the simulated data-set
and reinforce the above findings.

The fit statistics also confirm the relationship between the 3PL
model and the theoretical factor structure. The MSD statistic is
consistently smaller for the items loading on the second factor than for
those loading on the first factor. The correlation between the factor
loadings and the MSD statistic for the 3PL model is -0.93, indicating the
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strength of this relationship. Interestingly, neither the 1PL MSD nor
the fit statistic are significantly correlated with the factor loadings.
This indicates that ‘the ability scale of the 1PL model does not seem to
be related to any of the theoretical factors.

To further test this last hypothesis, the factor scores corresponding
to the varimax factors and the first principal component were estimated
and correlated with the ability estimates from the two latent trait models.
These results are given in Table 6. The results presented here are some-
what of a surprise. Although the 3PL ability estimates are clearly more
closely related to the second rotated factor than to_the first, the
correlation with the second factor is surprisingly low (.56). It is about
the same size as the correlation with the first principal component and
the raw scores. The 1PL ability estimates, on the other hand, correlate
highly with the raw scores (the raw scores being 2ni;£f{cient statistic
for the ability estimates) and the first factor s s, and equally well
with the two sets of rotated factor scores. The results are exactly what
would be expected if the 1PL estimates were based on the sum of the scores
on the two factors. On the basis of these results, it seems that tie 3PL
model is estimating the second factor, though rather poorly, while the 1PL
model is estimating the sum of the two factors.

To confirm or deny that the 3PL model estimates one factor and the
1PL model estimates the sum of the factors, two other data-sets were
analyzed: the 550AN7 data-set, and the 950AN9 data-set. The loadings,
3PL discrimination, and the fit statistics are given in Table 7 for the
550AN7 data-set and in Table 9 for the 950AN9 data-set. The correlations
between the variables in these tables are presented in Tables 8 and 10
respectively. Tlie correlations between the ability estimates and the
factor scores are presented in Table 6 along with those from all of the
other data-sets.

Notice first that, similar to the 250AN data-set, tne items with high
discrimination parameters correspond very closely to the items with .7
loadings on theoretical factor II. The first item is the only exception,
probably due to the extreme difficulty of that item, making estimation
of the parameters difficult. A similar relationship can be seen between
the discrimination parameters and the second varimax factor loadings
derived from tetrachoric correlationms.

The correl.'ions between the variables given in Table 8, reflect these
subjective evaluations. The 3PL discrimination parameters correlate .91
with the second theoretical factor loadings and .92 with the second
varimax factor. A smaller correlation is present with the first
principal component, indicating that the first component is to some extent
estimating the second varimax factor. The 3PL MSD statistic has a -.54
correlation with the second theoretical factor, supporting the overall
conclusion.
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Table 6 N

Correlation between Ability Estimates,
Raw Scores, and Factors for the Sixteen Data-Sets

f Variable
" +. Phi Tet Tet
Ability Raw 3PL * Principal Principal Varimax

Data-set Estimate Score Ability Component Component 1 2
MSCATVS 3PL 97 98 98
1PL - 99 96 . 97 97
MSCATQS 3PL 97 98 98
’ 1PL 99 97 ' 97 97
MSCATV6 3PL 98 - 99 99
1PL 99 97 98 98
MSCATQ6 3PL 97 98 98
. 1PL 99 96 97 97
8TL075 3PL 83 89 32
1PL 99 85 89 29
ST0576 3PL © 88 91 87
1PL 99 90 93 88
" §T1076 3PL 89 94 91
’ iPL 98 90 88 86
ST3577 3PL 95 98 98
1PL 99 95 97 97
_ 150AR 3PL 97 97 98
1PL 95 99 95 97

250AN 3PL 59 59 56 29 56

1PL 98 66 98 97 71 71
250AR 3PL 71 69 92
1PL 99 73 99 74
25045 3PL 82 56 62
1PL 98 83 76 83
950ANS 3PL 93 93 94
1PL -8 95 98 98

950AN9 3Py, 62 . 82 67 74
1PL 99 62 72 72 44

950AN3 3PL 71 36 41
1PL 100 71 25 33

550AN7 3PL 70 46 36 64

1PL 100 70 32 27 4;

Note: All values presented without decimal points.
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o~ Table 7
£ Item Statistics for the 550AN7 Data-Set
o, ‘ Theoretical Varimax  Principal
& - * Loadings 3PL 1PL Factor Component
R Item II a MSD rit  MSD II Factor 1
i i 0 213 093 13 092 05 23
: 2 0 22 164 57 153 06 33
L 3 0 18 191 79 178 02 24
; 4 0 30 201 62 193 . -02 -14
= 5 0 12 207 94 192 -01 32
3 6 0 35 212 26 199 =01 -08
3 7 0 18 223 34 212 05 31
- 8 0 09 227 49 209 ~04 -48
: 9 7 162 16l 08 214 77 48
{ 10 7 213 149 14 213 75 46
§ 11 7 196 159 95 222 75 43
% 12 7 195 149 47 215 75 C49
& 13 0 11 242 90 220 01 30
i 14 0 05 241 08 227 -07 -52
) 15 0 09 241 . 24 224 08 -40 °
16 0 36 224 97 , 219 03 -06
; 17 0 04 239 50 224 -05 -52
' 18 c 32 229 24 225 00 -09
19 7 213 163 10 221 74 48
20 - 7. 213 152 45 220 76 .49
21 0 32 228 25 222 00 -11
22 0 13 246 12 229 -~ 04 35
23 7 164 168 07 230 74 44
24 0 08 248 88 230 01 -47
25 7 188 161 57 226 73 51
26 0 07 247 02 235 n2. 21
27 0 07 249 16 232 05 27
28 0 06 249 51 236 -02 ) -46
29 0 10 247 07 228 00 33
30 0 05 249 16 236 -02 19
31 0 34 221 51 221 01 -08
32 0 27 231 44 230 -05 -19
33 . 0 07 248 95 231 04 27
34 0 05 246 54 233 -05 23
35 7 166 175 36 229 74 49
36 7 169 172 70 224 74 47
37 0 05 243 10 231 -04 -49
38 0 03 240 68 223 -06 -49 °
39 0 03 241 10 226 -07 18
40 0 02 235 81 223 -03 17
41 0 34 194 42 201 01 -09
42 0 06 239 56 224 00 -46
43 0 c9 228 24 -215 -07 31
44 0 10 230 95 211 04 25
45 0 11 209 89 199 03 31
46 0 12 207 19 197 02 36
47 0 40 159 77 177 08 -02
48 0 36 150 69 167 04 -07
49 0 08 169 ‘58 156 -01 31
50 0 10 096 92 093 -03 -48
Note: All values presented without decimal points.
Q T
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Table 8

) Correlations between Factor Loadings,
P, Fit, MSD Statistics, and 3PL Discrimination for 550AN7

Variable 1 2 3 4 5 6 7 8 9 10 11 {2 13 14 15
J. Faétor I® - - = - 232 - - - < 229 - 99 -29 -83
2. Factor II - - - 91 -5 - -~ - 99 - 28 - 56
3. Factor III® - e = = e - = - - - 99 -
4, Factor 1 T - - - - e . = - - - -
5. Factor V - - - - - - 99 - - -
6. 3PL Disc ’ 71 - - - 92 - =33 - 55
7. 3PL MSD - 70 - =57 -~ - - -36
8. 1PL Fit ' - - - - - - -
9. 1PL MSD - - - - - -
10. Varimax I ' . - - - - =30
11. Varimax II - -32 - 60
12. Varfmax III - - 37
13, Varimax IV -31 -86
14. Varimax V -
15, Principal \

Component 1

. Note: All values presented without decimals points. Only significant

correlations are presented.

8These factors are based on theoretical lcadings.

As with the 250AN datsa, the 1PL Fit for the 550AN7 data is not
“significantly related to any of the other statistics, suggesting that
variations in discrimination or factor loadings are not a facztor in lack
of fit with this statistic. The only significant correlation with the
1PL MSD statistic is .70 with the 3PL MSD statistic, indicating that some
of the error sources are the same, but that the common ones are not related
to the factor structure, or to variation ir_discrimination.

The 950AN9 data further confirm these results. The high 3PL

discriminatior values correspond to the .9 locadings on Factor 9, except

for the very difficult items. This observation also holds true for the
first varimax factcr. The correlational data in Table 10 gives similar
results, yielding high positive correlations between 3PL discrimination

and Theoretical Loadings IX and Varimax Factor I, and negati—e correlations
between the 3PL MSD statistic and the same sets of loadings. The 1PL Fit
has a barely significant correlation (.29) with Theoretical Factor I and

a correlation of -.31 with the 1PL MSD statistic, again showing the lack

of relationship between 1PL Fit and discrimination and factor structure.

.




Table 9

. Item Statistics for the 950AN9 Data-Sets
R . Theoretical ‘ Varimax Principal

Loading 3PL iPL Factor Component
Item 9 a MSD . Fit MSD 1 Factor 1

1 0 05 113 52 109 00 20
2 0 193 141 92 155 00 54
3 0 16 195 72 185 -01 51
4 . 0 0L 1-8 21 191 00 -28
5 0 03 214 71 206 -04 05
6 0 193 197 70 201 o1 ) 58
7 . 0 193 192 70 * 200 -02 , 56
8 9 193 082 99 210 91 40
9 - .0 03 237 40 223 00 14
-- 10 .0 03 242 89 22 00 14
11 0 04 242 02 232\ 04 14
12 9 193 081 33 214 \\ 93 45
13 0 63 244 20 234 \ =05 01
14 0 06 242 64 229 \ -03 25
15 0 01 243 73 228 . =01 -21
) 16 0 13 240 64 225  \-01 15
17 0 24 232 43 225 ' 05 53
18 0 05 247 08 234 -03 07
19 0 04 247 28 236 -02 03
. 20 9 193 086 29 217 92 47
21 0 06 248 25 236 02 05
22 0 26 233 24 223 06 52
23 0 06 248 99 232 -02 27
24 9 193 083 85 223 94 40
25 0 13 244 82 231 00 14
26 0 12 244 s5 228 -02 19
27 9 193 087 43 222 93 42
28 0 15 242 08 227 o1 57
29 0 C4 247 40 234 -01 02
30 0 13 243 63 227 05 16
31 0 0L 249 56 235 00 -21
32 0 n2 2630 397 229 02 29
33 0 13 244 96 226 -02 59
34 0 26 222 61 219 03 50
35 0 0L 245 05 229 oc -21
36 0 02 239 19 228 00 12
37 G 0/ 243 24 231 04 04
38 0 15 237 1 224 06 59
39 0 09 233 36 215 04 32
40 0 15 230 62 217 01 17

41 0 23 217 12 212 02 51 .
42 . 0 06 232 38 220 04 09
43 0 oL 229 37 13 02 -17
44 9 193 073 77 201 93" " 45
45 0 05 207 i 195 00 02
46 0 04 212 7o 196" . 07 ~14
47 0 22 187 60 186 01 . 45
48 0 06 179 88 171 .07 03
49 0 10 166 74 155 02 31
" 50 e 07 095 81 091 00 28

Note: All valués presented without decimal points.
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Table 10

Correlations betwesn Factor Loadings

LPL Fit, MSD Statistics, and 3PL Discrimination for 950AN9

5 6 7

10

) LRIC 51

g
»

a
These factors are based on theoretical loadings.

Variabie 1 12 13 14 15 16 17 18 19 20 21 22 23
- 1. Pactor 1% - - - - =29 - - - 2 99 - - - - - -
2. Factor I - - - S '
3. Factor IIP - - - 2 - - - = 39 - - - - - - - 852
4. Factor IW¥ - - - e L
. 5. Factor B - - - - - - - - 106 - - - - -4
6. Pactor VI8 - - = e e = 4 2 e - - - 88 - -
7. Factor VIT8 - - e e - - = - 91 - - - - -66
8. Factor VIIP®’ - - e e 4 4 4 = - =100 - - -
9. Pactor I® 78 -80' - - 92 - - - e = - - - 30
= 10. 3PL Disc. \ -76 - - 72 32 - - - - - - - 54
e 11. 3PL MSD - 55 -75 - - - - - - - - =37
12. 1PL Fit -31 - - - - - - = - - -
¥ 13. 1PL MSD - - - - - - - - - -
14. Varimax I - - - - e e - - 29
o 15. Varimax II - - - - - - = 55
3 16. Varimax III - - - - - - 44
17. varimax IV - - - - - -
18. Varimax V - - - - 66
. 19. Varimax VI - - - -
4 20. Varimax VII - - -
: ¢ 21, Varimax VIII - - =28
22. YVarimax IX -
23, Principal -
Factor 1
Note: All values presented without decimal points. Only significant correlations are presented.
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The correlations between the ability estimates and the factor scores
presented in Table 6 show relationships similar to those for the 250AN
: data-set. The correlations between the 3PL ability estimates and the
: factor scores, corresponding to the various factor analytic solutioas,
; /;9n£irurwhat was expected based on the previous analyses.
: For the S55CAN7 data-set, the correlation with the factor scores from
the second varimax factor and the 3PL ability estimates is substaatially
higher than the correlation with the first principal compoaent factcr
scores and the corresponding ccrrelation with the 1PL ability estimates
(.47). This latter correlation accounts for 22% of the variance while
20% would be expected if the 1PL ability estimates are based on the sum
of the factors. A surprising finding for this data set is the .70

correlation between the raw scores and the 3PL estimates. No obvious
explanation is available for this result.

The 950AN9 data-set gives similar results, The correlation of
the 3PL estimates with the factor scores from the first varimax factor
is much greater than that obtained using the 1PL estimates. The principal
component factor scoeres have a slightly higher correlation with the 3PL
ability estimates. This is probably due to the fact that these factor
scores are based'on several of the theoretical factcrs, as were the 3PL
discrimination parameters (Factors 3 and 9). The varimax factor is a pure
.indication of theoretical factor 1.

€ In general, these simulation results indicate that when the data-sets
are made up of equally weighted, independent factors, the 1PL model
estimates the sum of the factors, while the 3PL model tends to estimatz 4
only one of the factovs. This conclusion is a reasonable one based on

" the sufficient statistic properties of the 1PL ostimates, and the factor
analysis interpretations of the 3PL model (Christoffersen, 1975).
However, most tests are not composed of equally weighted independent
factors - instead they have a dominant factor with several smaller specific
factors.

The 950ANS da t simulates this type of test. Its first factor

is large, and 52£’§:;:i eight are relatively minor. In this case it does
not make sense Ao correlate the item parameters with the theoretical

. loadings, since there is no variation in the loadings of the dominant

factor. Therefore, the correlatier with the factor scores was the only

. analysis performed in this.case. Table 6 contains these correlations
which are uniformly high for both models, indicating that both are
estimating the first principal component.

The eight live testing data-sets also contain dominant first factors,
although they are relatively small for the ST series, and therefore
‘they also yield data bearing on this igsue. In most of the cases (6 out
of 8), the 3PL estimates cerrelate slightly higher than the 1PL estimates
with the factor scores, while the 1PL estimates correlate higher with the

e
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raw scores. In all cases, the correlations are suiLstantial, the differences
are small, ind the estimates from the two models are highly related.

These facts yield further evidence that the models are estimating the
dominant factor when one is present.

Relationship to criterion measures Along with the above analyses that
deal with what is being measured using the two latent trait models, two
other analyses were performed that evaluate the two models relative

to empirical criteria. The first analysis evaluates the relationship of
the full set of test items to the ability estimates obtained from the
models. This was done to determine the amount of variance in the items
explained by the ability estimates. In order to determine this relation-
ship, the multiple correlation between each of the ability estimates and
the fifty items ou each test was computed. These values are presented

in Table 11 for the ability estimates from the two models correlated with
the items from the sixteen data-sets. Note that all of the correlations
with the 1PL ability estimates are extremely high, as they must be

because of the sufficient statistic properties of that model. The multiple
correlations are high for the 3PL ability estimates when a dominant factor
is present, but drop when independent, equally weighted factors are presexnt.
This fact again supports the hypothesis that the 3PL model egtimates a
single factor since the correlation is reduced when items loading on other
factors are present.

Table 11

Multiple Correlations Among
Ability Estimates and Test Items

Ability Estimate

Test 1PL 3PL 1PL-3PL
MSCATVS .991 .983 .008
MSCATQ5 .998 .985 .003
MSCATV6 .993 .988 .005
MSCATQ6 .991 .983 - .0G8
ST1075 .994 ’ . 944 .050
ST0576 .993 .952 .04l
ST1076 .985 . .967 .018
ST3-577 . .996 . .985 .011
150AR .990 ° .997 -.007
250AN .981 ) w677 .304
250AR . .991 .948 .043
250A% .978 .a .839 —— .139
250ANS - .983 y 94D . .034
950AN9 o .99 \ .852. b .146
950483 .9998 .890 ° . .1098
550AN7 . .998 . 866 .132

Mean .9906 .9253 .07149
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A related t-test was performed on the mean multiple correlations for
the two ability estimates.to determine if the observed differences are
s;gnificant. The. difference in the mean correlations of .07 is
significant at beyond the .005 level indicating that the 3PL correlations
are significantly lower. ’

The second analysis based on empirical data was a determination of

¥
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g' o “the relationship between. the ability estimates and outgide criterior
3 , measyres. This analysis showed ‘which of the two models gave abiiity
2@, estiﬁéﬁes with greater predictive power. ' The criteg§ wsed for this
v - -.analysis were the first and second exam scores in an undergraduate
%?A measurement course. The correlations between the ability estimates and
: the two triterion measures are presented in Table 12. .In all but one -
g case, the 1PL ability estimates have higher correlations with the criteria
e than the 3PL estimates. However, in no case were the differences in
? correlations for the two models significant. One reason for the slightly
# lower correlations for the 3PL model could be the small sample size used
& in this analysis which would affect the 3PL model more than the 1PL model,
g' causing uastable estimates.’
§ Table 12
Correlations between Acility Estimaces
and Two Classroom Tests
: 4
. Data Ability . Test -
Set Estimate Exam 1 Exam 2
$T1076 1pL " .555 661
. . 3L .492 .599
STOS576 1pL 409 477
3rL ) .364 483
A ST1075 1PL .558 .576

§ 3PL .498 .535

N Summary A total of six analyses was run on the sixteen data-sets to

' evaluate the effects of multivariate data on the two logistic latent
trait models. These analyses dealt with the goodness of fit of the
models to the data, the relationship of the parameter estimates to the

. size of the first factor of the test, the relationship of ability
estimates to the factor scores, the relationship of ability estimates to

* item responses, and the relationship of ability estimates to outside
criterion variables.

i
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- The MSD statistic, which was used as a measure of goodness of fit,
‘showed that the 3P, model fit the data significantly better tHan the 1PL
model. As the factprial complexity and unreliability of the tests
. increased, the fit decreased. This hypothesis was checked further by
.correlating the MSD statistic with the eigenvalues. The results .
) indicated a strong negative relationship between the eigenvalues and the
# 7 average MSD ‘statistic. A follow up analysis indicated that the average
difficylty of the test was a second major factor in the deviation of the
model from fit. The 1PL probability of fit statistic was not significantly =~
. related to the size o° the first eigenvalues.

Other variables that were found to be related to the size of the
?1{5; eigenvalues were the average 3PL difficulty parameters (a measure
_ of .stability of estimation), and the sfandard ‘deviation of the 1PL
eas;p@ss parameters (an indication of change of scale). None of these
-telgtionships indicate new findings, but rather confirm thkeoretical
expectations. ) )

To determine what components in the tests were being estimated by ©
the two models, the item parameter estimates were correlated with the . )
theoretical ;,and empirically obtained factor loadings. These analyses
indicate that a single factor is estimated by the 3PL model while the

— 1PL model Zstimates the sum of the factor scores. The correlations of
- the factor sdstes with the ability estimates tend to confirm this
finding and also show that when there is a dominant first factor, the
two models estimate the same largest factor. If a number of equally
1 B powerful factors are present, there is no way_ to predict which factor
\ will be estimated by the 3PL model.
s ~ The multiple correlations of the item response with the ability .
estimates show that the 1PL model has a significantly stronger relationshig
. .to the full set of items-than the 3PL model. This finding is.consistent
with :ke’toniention that the l?L‘model estima~es the sum of the factgrs,
therefore being affected by every item, and the 3PL modei—estigates a
single factor, therefore only being affected by the items from"that

v.1th the outside criterion measures, although the 1PL model did have
slightly larger values. Overall, ‘the 3PL model fits the data better
than the 1PL model, but this differen.e is not reflected in correlations
with the outside variables. On the basis of these analyses, there is
little to indicate the selection of one model over the other for the.
calibration of items £8r ability estimation wuen fifty item group tests
are being used.

ctor. .
The two models ¢1d not diffdr significantly in their correlations '
|
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Effects of Sample Size

The effects of sample size on item calibration were determined by
selecting systematic samples of rious sizes from the Missouri Statewide
Testing Data from the 1975-76 sc..,ol year and then obtaining 1PL and 3PL
item parameter estimates for each sample. Estimates of item parameters
from each of the two calibration procedures were compared by computing
the squared difference of each parameter estimate with the estimate from
the largest sample. A one-way repeated measures analysis of variance was
then performed using the squared difference values fcr the fifty items
as the dependent measu.e with sample slze as the independent variable to
determine if the parameter estimates changed with sample size. The mean
squared differcnces for each of the parameter estimates for the three
3PL item parameters and the one 1PL item parameter are given in Table 13
along with the analysis of variance results for the parameters.

The means of three of the four sets of item parameters give a
similar patterr of results. The 2,997 sample has the smallest mean
squared deviation, while the deviations tend to get larger with
decreasing sample size. This relationship is strong for the 1PL easiness
parameter and the 3PL discrimination parameter while the 3PL difficulty
and guessing parameters show considerable variation. The analysis of
variance results show significant differences in all cases except the
3PL difficulty parameters. In that case, although there are large

. differences in the means, the instability of the difficulty parameters
‘ causes large variation in the estimates resulting in a failure to reject.

The analysis of the variances of the squared deviations of the
difficulty parameters showed extremely large differences. The ratio of
the variances of the 1,090 sample to the 2,997 sample was 2,527, easily
rejectirg the hvpothesis of homogeniety of variance using the F-max
statistic (F maxss> 3.02 needed for rejection). To compensate for this
heterogeniety, a second ANOVA was performed on the 3PL difficulty parameter
squared deviations after a logarithmic transformation was used
(Y = log(x+l) (§ee Winer  (1971), page 400). The ANOVA table for this
second analysis is also given in Table 13. - The revised analysis gave a - : K
significant F value indicating the presence of differences in the trans-
formed mean squared deviation values for 2PL difficulty.

The purpose of this set of analyses was to determine at what point a
decrease in sample size would adversely aifect the results of item
calibration. This question was addressed directly in a post hoc analysis
performed using the ANOVA results. Using the mean squared deviation values
for each sample size, the Newman-Keuls post hoc procedure was used to
determine the largest sample that was significantly different from the
mean squared deviation for the 2,997 sample. The results of these analyses
are presented in Table 13. Samples that are not significantly different
are underlined. "~ Those that are different do not share the same underline.
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Table 13

Comparison of Parameter Squared
Deviations for tne Two Models by Sample Size

Parameter
Sample 1PL 3PL 3PL 3PL
Size Easiness Difficulty Discrimination Guessing
150  .0483 .1811(.1326)2 .2187 .0014
382 * .0196 .1413(.0847) .0973 . 0009
763 .0063 .0272(.9258) b .0615 b .0020 b
1090 .0063[.0064}b .1939(.0821)[.0260] .0585[.0395] .0009([.0011]
1525 .0055 .0299(.0263) .0589 .0012
2197 .0047 .0138(.0135) .0335 .0011
2997 L0041 .0166(.0162> L0241 . 0008
.
#Pransformed means using log(x+l).
bResults from second sample.
ANOVA 1PL Easiness
Source d.f. SS MS F P
Samples 6 .0791 .0132 18.17 <,0001
Error 294 .2133 . 0007
p ANOVA  3PL Difficulty
\
Source d.f. SS MS F P
Samples 6 2.009 .335 1.50 N.S.
Rrror 294 65.643 .223
ANOVA 3PL7Discrimination
Source d.f. SS MS F P
Samples 6 1.302 217 7.30 <.0001
Error 294 8.743 0.030
ANOVA 3PL Guessing
Source d.f SS MS F P
Samples 6 0.000055 .000009 3.44 <.003
Error 294 0.000787 .000003




Table 13(cont) -

Transformed 3PL Difficulty
Source d.f. SsS MS F ,{‘ P
Samples 6 0.627 .104 3.61 <.002
- Error 294 8.506 0.029
Second Sample 3PL Difficulty
Source % d.f. SS MS . F P
X Samples 6 1.420 0.237 3.22 <.005
Error 294 21.630 0.074
‘ Post Hoc Comparisons
1PL Easiness
) 2997 2197 1525 . 1190 763 382 150
. : —
] $
| |}
Lo 3pL Difficulty
2997 2197 763 1525 1190 - 382 150
t |
{ i
l |
f 1
’
3PL Discrimination
2997 2197 119C 1525 763 382 150
- —
3PL Guessing
2-97 1190 382 2197 1525 150 763
| {
i i
i 1
i i




rd
¥

P b T T AL s I VN 4
LR DD S

o Nerpe Abw xS Fre x Py Fhs QRN G pemt g
R I
Y PRI,

£
£
&
T
.
3
¥y
>
o
¥

i

e M, A Fee amoaa
* 2 h

~53~

The results of®this analysis for the 1PL Easiness parameter are most

"-easily interpreted? The largest sample significantly different from the

2,997 sample 35 the 382 sample while the 150 sample results are signifi-
cantly greatef than all of the others. These results suggest that there
is little loss in calibration precision for the 1PL model until less than
763 cases are used. Although some loss is present for the 382 sample,
the 150 sample is clearly inferior to all of the rest.

The analysis of the 3PL difficulty parameter estimates was more
difficult to interpret. The nrder of the mean squared-deviations did not

‘follow the sample sizes. The 1,090 sample had the largest squared

deviations from the largest sample, followed by the 150 sample, the 382
sample, and the 1,525 sample. The 2,197 sample had the smallest squared
deviation, followed closely by the 2,997 sample. The 763 sample had a
much smaller squared deviation than was expected. Much of the surprising
variation in this data was due to a few extreme estimates of the difficulty
parameters. These occurred in cases where the items were very difficult
or the discrimination was extremely nigh or low. The extreme values
inflate the variance of the squared deviations causing the heterogeniety
of variance mentioned above. The logarithmic transformation reduced the
heterogeniety somewhat and also re-ordered the means slightly.

The results of the post hoc comparisons on the transformed 3PL
difficulty data indicate that the 150 sample cleariy deviates more than
any other from tue largest sample. None of the other mean:.squared
deviations differ significantly from each other, even though some of the
means are much larger than others. This can be attributed to_ the large
difference in variances even after the logarithmic transformation. It
should be noted that the smallest deviation for the 3PL difficulty
parameter was about the same size as the 382 sample for the 1PL easiness
parameter. Also, the asymptote on the mean squared deviation does not
yet seem to have been reached for this parameter. Possibly, even larger
samples are needed for stable calibration.

The 3PL discrimination parameter yielded fairly clear results. As
the sarple size decreased, the squared deviations increased.” The 150
sample was significantly different from all of the other samples, while
all of the others were not significantly different from each other.
Samples of 382 or over, therefore, seem to estimate the discrimination
parametexs well, while samples of smaller size seem to result in inaccurate
estimates. On the basis of this data, good estimates of discrimination
parameters can be attained £rom much smaller samples than are required
for the difficulty parameters

The analysis of the guessing parameter squared deviatioas was
less meaningful than the others because of the constraints placed on the
parameter by the LOGIST program (Wood, Wingersky, & Lord, 1976). When
very small samples were used, the guessing parameter estimates were not
allowed to change at all, giving very small squared deviations. As the
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- sample sizes increased there were fewer constraints on the guessing
parameter as the other parameter estimates became more stable. This
resulted in greater squared deviations for the moderate samples. These
deviations further decreased as the sample sizes increased. The ordering
of the mean-squared deviations for the gugssing parameter reflected this
pattern. The 763 sample gave significantly larger deviations than the
largest sample while the rest were not significantly different. Another
interesting observation was that the squared deviations for this parameter
were smaller than for all of the other parameters, showing the effect of
the constraints.

Because tl.e large squared deviations for the 1,030 sample were caused
by a few extreme difficulty parameter estimates, a follow-up“analysis .
was performed on a second sample of 1,088 to verify the results. The
extreme values were not present in the analysis of this data, supporting
a point of view that the extreme values were chance outliers. The squared
deviations from this second sample are given in Table 13 along with the
additional ANOVA results.

The mean squared deviation for this second sample for the 3PL
difficulty was substantially lower than for the first sample (.0260
versus .19306) indicating the extreme variability of the sampling
distribution of the squared deviations for the 3PL difficulty values and
the possibility that the earlier sample contained several outliers. A
second Newman-Keuls post hoc analysis gave the came results as the initial
analysis. Also, heterogeniety of variance was still present in the
analysis of the seven samples with the new data included. The re-analysis
of the data after using the log-transformation resulted in ro change in
“the results.

| se to the great variation in the 3PL difficulty values, the results
of this study were not -asily interpreted, irdicating the need for further
research. However, some general conclusions can be arawn from the data.
The 1PL easiness parameters seem to have stabilized when the sample
size is greater than 382. A sample somewhere between 382 and 763 is
probably the lower limit required when using this model. The 3PL data are
harder to interpret. The 3PL discrimination parameters seem to be
moderately stable above the 150 sample, but the mean square deviatioms
for the 3PL difficulty values are far from stable, with values for the
2,997 sample of about the same size as squared deviations for the 1PL
easiness parameter for the 382 sample. Although these values are not on
precisely the same scale, the values should be somewhat comparable. This
result suggests that the 3PL difficulty parameters are just starting to
stabilize. The heterogeniety of variance in the analysis of the difficulty
parameters reduces its usefulness. Hhowever, the 150 sample is clearly
worse tban the rest. Overall the results suggest that substantially
larger samples are required for the 3PL model. The guessing parameter
does not enter into this discussion because of the numerous restrictiors
placed upon it.




Effects of item quality

The quality of items used in a test is indicated by the valued of
two parameters: the discrimination gnd guessing levels of 'the "items.
Items with high discrimination and low guessing parameters are items of
high quality. ' To determine the effects of item quality on the calibration,
the mean discrimination and  guessing ‘estimates for the eight live testing
data-sets were computed and compared to mean values of other statistic.
available on the tests. ~The simulation’ data were not included@ in~ghis
analysis because no guessing component was included in the generaéicn
of the data, making it incompatible:with the other data-sets.

The mean values of the parameters for the 'eight data-sets and the
correlations of the means with the mean values fur seven other test
statistics are given in Tables 14 and 15 respectively. The mean 3PL
discrimination statistics were found to be significantly related to three
statistics; the 1PL Fit, the traditional difficulty (p), and the
traditional discrimination (rpe . pig). The correlation of the mean 3PL
discrimination and the mean lBL Fit statistic was ~.86, indicating that
tests with low 3PL discrimination tended to fit the 1PL model better than
tests with high discrimination. This result was confounded by sample
size, although sample size did not enter into the computation of fit.

The MSCAT tests have high discrimination, low fit and have large samples;
the ST series tests have lower discriminations, smaller samples, and fit
the 1PL model better. The results tend to imply that mediocre tests fit
the 1PL model better than highly discriminafing tests, buc caution must
be used in generalizing this interpretation. Neilther MSD fit measure was
significantly related to mean 3PL discrimination.

Table 14

Means and Standard Deviations of the Guessing
and Discrimination Parameter Estimates for Eight Data-Sets

Test Name X S X ' S

(o4 (o4 a a
MSCATVS .186 .036 .905 .410
MSCATQ5 .155 .043 .978 484
MSCATV6 .153 .028 . 840 .360
MSCATQ6 .155 .038 .959 .460
sT1075 214 .052 .719 .682
ST0576 .158 .013 466 417
ST1076 .218 .027 .683 .630
ST3577 .160 .014 447 .376
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Table 15

Correlations Between Mean Discrimination
and Guessing Parameters and Seven Other Variables

T b

1PL FIT  1PL MSD  3PL MSD P - S Sy Tpe.bis”

X, o -.86%%  -.28 " _.30  -.8L%% ° -0  -.33 . B4k
- )

)‘(c 42 -.66% -.67% .54 -.12 .62% -~ .51

#p < ,05

*%p < ,01 -

i

The second significant correlation with the mean discrimination
estimates was with the mean traditional difficulty of the tests (-.81). A&s
the tests became more discriminating, they tended to become more difficult.
The average difficulty of the more discriminating tests was about .58
while those poorer ia discrimination had an average difficulty of aoout
.69. Again, these results were confounded by sample =ize, making the
interpretation of the results unclea. .

The third significant correlation with the mean 3PL discrimination
occurred with the traditional discrimination index. This result was
expected and showed the relationship between traditional and latent trait
discrimination estimates.

. Three variables were also significantly correlated with the mean
3PL guessing parameter: the 1PL MSD statistic, the 3PL MSD statistic,
and the standard deviation of the 3PL difficulty estimates. The first
two correlations imply that as guessing increases, fit to both models
improves. This is the opposite of what was expected and it may be
explained as an artifact of the 3PL calibration program. The estimates
of the 3PL guessing parameter are only allowed to change from a pre-set
value when good estimates are available for the difficulty and
discrimination parameters. Good estimates are only likely to be availabple
when the model closely fits the items. Thus high guessing values are
only possible when the models closely fit the data.

The third correlation, between the mean 3PL guessing values and the
standard deviation of the 3PL difficulty estimates, yielded the expected
results. As guessing increased, the standard deviation of the difficulty
estimates increased. As discussed earlier in this paper, the standard
deviation of the difficuity indices is a measure of the stability of
the calibration. Thus, as the amount of guessing on the items Increased,
the stability of the calibration tended to decrease (i.e. the standard
deviation of the 3PL difficulty values increased).
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Due to the many confounding variables in the above analysis, the
results obtained were not easily interpreted. Therefore, a second analysis
was performed within the test types to remove the confounding. This
analysis intercorrelated the item statistics separately for the ST series
tests dnd .the MSCAT tests. Two hundred sets of item statistics were
available for these two analyses. The obtained correlation matrices were
then factor analyzed using the principal components technique and rotated
to the varimax criterion. The factor analysis and rotation were done
to summarize the relationship present between the item statistics-and to
determine what statistics were related to item quality. The rotated
‘factor leading matrices for the MSCAT and ST series tests are presented
in Table 16. ,

Although the MSCAT tests are of higher quality and the statistics
are based on a larger sample than the ST series tests, the factor analysisc
of the ST series is easier to interpret because of greater variation in
the item statistics, resulting in higher correlations and & clearer factor
structure. Therefore, the results of the ST analysis will be discussed
first and the MSCAT analysis will be used to reinforce the findings.

The principal components analysis of the ST series tests yielded
four factors with eigenvalues greater than 1.0. These factors were
rotated, yielding the factor loadings presented in Table 16. The first
rotated factor has been labeled a discrimination factcr with every
discrimination statistic having a significant loading. The lst Principal
Factor and Component Loadings had the highest relationship to thise
factor and the 3PL discrimination values had the smallest significant
loading. The magnitude of this latter loading was probably caused by
instabilities due to the small sample size.

The second rotated factor was labeled a difficulty factor with
high loadings from traditional difficulty and 1PL easiness. The 3PL
difficulty statistic had a lower, but significant, fegative loading.
The negative sign was a result of the opposite scaling of the difficulty
parameters. Three other statistics also lozded significantly on the
factor; 3PL discrimination, 3PL guessing, and 1PL MSD. The presence
of the discrimination parameter reflected the relationship between
difficulty and discrimination discussed by Lord (1975). The guessing
loading showed that as the easiness of the item increased, the size of
the guessing parameter also increased. The 1PL MSD values tended to
decrease with easier items, showing better fit.

The third factor was labeled a MSD fit factor. Both the 1PL
and 3PL MSD fit statistics loaded highly along with 3PL discrimination,
The J.oadings showed that with low discrvimination the MSD statistic was
large, as it should be, basec on the discussion following Equation 22.
Factor four was labeled a guessing factor, having high loadings on 3PL
guegsing and 1PL fit. The two loadings showed that when guessing was
high 1PL Fit was low. This was the only factor with a significant
loading for 1PL Fit leading to the conjecture that guessing was a major
component in lack of fit using this statistic.

.. b4
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. Table 16 ‘_1

Rotated Factor Loading Matric
for the Item Statistics from the ST and MSCAT Data-Sets

Factor

Data-Sets Variable I1 111

1st Principal Factor Loadings .96 -.07 .14
lst Principal Component Lo«dings . .05 .14
lst Tetrachoric Principal Component
Loadings . .20 .17
Traditional Discrimination .69 .10 .18
3P, Discrimination . .11
MSCAT | Traditional Difficulty
1PL Fasiness
3PL Difficulty
1PL Fit
1PL MSD
IPL FkiSV
3PL Guessing

1st Principal Factor Loadings
1st Principal Component Loadings
ist Tetrachoric Principal Comp nent
Loadings
Traditional Discrimination
ST Series 3PL Discrimination
Traditional Difficulty
1PL Easiness
3PL Difficulty
IPL Fit
1L MSD
3PL MSD
3PL Guessing

Note: Significant values are underlined.
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, The MSCAT factox- analysis yielded somewhat similar results,

but with some confusion between the difficulty and discrimination
factors. The discrimination indices had the highest loadings on .the
factor, with the exception.of the 3PL discrimination, but the three
difficulty indices also had significant loadings. It seemed that on
this test, the easier items were more discriminating.

N .

. The second facter had high loadings with the 1PL and 3PL MSD
statistics andawith the 3PL guessing parameter. These loadings indicated
a tendency toward poor fit when the items had high guessing parameters.
This result was not found with the Sf series tests..

The third factor was another m(;ture of difficulty and discrimination
statistics. Traditional difficulty and the 1PL easiness statistics
had moderate loadings on this factor, and.3PL discrimination had a
large negative loading. The 3PL difficulty parameter, however, did not
load on this factor. These results indicated that easy items were low
in 3PL discrimination; a result that was directly opposite to those from
Factor I. This indicated that the traditional and 1PL discrimination
indices were rot operating on the same component as the 3PL discrimination
index.

The fourth factor showed the same pattern as the loadings for the
ST series tests. The 3PL guessing parameter and 1PL Fit statistics
gave the on%g significant loadings to this factor. Again, items with
low guessing” values had a high probability of fit on the 1PL model.

2

The effects of item quality shown by this analysis are threefold.
First, guessing is the major factor in the lack of fit statistic for
the 1PL model while discrimination seems to be unrelated to it. Second,
guessing al seefis to be related to the MSD statistics, but the results
are not consistent across the tests. Third, the 3PL discrimination
parameters are related to lack of fit in the ST series tests, but not
for the MSCAT tests. r

Calibration Costs

Since the earlier analyses in this report showed that the ability
estimates were highly correlated when a dominant first factor was
present in a test, there is little of a technical nature to use in
selecting between these procedures when using them for ability estimation.
Therefore, practical considerations become of importance in selecting
a calibration procedure.

The major practical considerations of concern here are the cost
of the calibracions and the storage requirements of the programs. The
cost and CPU time for the GO-step of the two programs are given in
Table 17 for the different data-set sizes used. The overall CPU time
required for each data-set is given in Table 2. No significance tests
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were required to determine that the LOGIST program costs substantially

.more, both in time and money, than the }PL calibration program. On

the average, the 3PL program cost 7.34 timés as much and used 15.49 times
as much CPU time for computation. The actual figures will probably not
transfer directly to other computer systems, but the proportions should
remain about the same. These figures were obtained from an IBM 370/163
computer system.

In terme of storage required, the 1PL program required 128K of core
storagegand one scratch unit for temporary storage. Aghe 3PL program
required 200K of core storage and two scratch units for temporary storage.
Thus, the 3PL procedure was not only mbre expensive to run, but it also
required mwore compr=tier facilities. . 2

One £inai note concerning the two procedures deals with the increase
in cost as sample size increases. The cost of the 3PL procedure increased
much faster, than the 1PL procedure because ability estimates wers cbtained
for each persoan. The 1PL procedure only obtained ability estimates for

each score group. The increase in cost is reflected in the data presented
in Table 17.

Table 17

Cost and Computer Time Required
for the UCON and LOGIST Procedures
for Various Sample Sizes

Sample Seconds
Procedure Size Minutes CPU Go-step CPU

/

360 .15 3.59
1000 .21 7.52
3000 . .36 16.89

300 15.36 ) 38.33
1000 37.31 162.72
3000 43,91 . 245.19

-

Note: Sample sizes rounded to the nearest hundred.

Summary and Conclusions

The purpose of the research reported in this document was to evaluate
the one- and three-parzmeter logistic models for use in calibrating items
for tailored testing applications. However, several estimation

3
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procedures have been developed for each of these models and specific
procedures jad to be selected before any comparisons could be made. To
facilitate the selection process. a detailed review of the literature
concerned with latent trait model calibration procedures was performed.
Seven one-parameter and six three-parameter calibration procedures

were identified and evaluated on the basis of statistical and practical
characteristics. Fr@m the techniques reviewed, the procedure developed
by Wright & Panchapakesan (1969) was selected for the one-parameter
model, and the procedure developed by Wingersky, Wood, and Lord (1976)
was selected for the three-parameter model. These procedures were

felt to give the best combination of precision and pracrticality of those
available.

The models, and their corresponding estimation procedures, were
then compared on their ability to calibrate multivariate data, the
sampl. size needed for calibration, the effects of item quality on
the‘calibration, and the operational costs. Since the use of tailored
testing with achievement tests is a long range goal of this research,
the effects of multivariate data are of special importance. From the
theoretical literature, it can be predicted that the three-parameter
model would extract one factor from a set of items while the one-
parameter model would be related to all of the factors present
(Christofferson, 1975; Rasch, 1960). The analyses of the multivariate
data-sets supported this point of view, showing that the three-parameter
model computed item discrimination paramerer estimates reiated to one
factor, while the one-parameter estimates were related to the sum of the
factors. However, when a relatively large first factor was present in
the data, both procedures gave amazingly similar results. This finding
was reflected mainly in the analyses of the ability estimates and the
correlations of ability scores with outside criterion measures.

Despite the similarities tound in the results of the procedures
for ability estimates, the goodness of fit of the models to the data
definitely showed the three-parameter model to be superior. A squared
deviation stztistic devised for this study was used for the goodness
of fit analyses. This statistic gave a much better description of the
operations of the procedures than the one-parameter probability of
fit measure. This latter measure seemed to be unaffected by the multi-
variate nature of the data, or varlations in discrimination, but was
affected by guessing. These results indicate that the one-parameter
provability of fit statistic is relatively uninformative concemlng the
fit of the model.

To further clarify the relation between the factorial complexity
of tests and the calibration of item pools, a number of descriptive
statistics were compared to the cize of the first eigenvalue from the
eighteen data-sets. The results showed that a strong relationship was
present between the size of the eigenvalue and the average discrimination
of the tests, the standard deviation of the difficulty and easiness
parameters, and the squared deviation fit statistic. From the relationships,
minjnum recommendations can be made concerning the size of eigenvalue
needed for a stable analysis.
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If all other factors were equal, either of the two procedures would
serve equally well for use with group administered tests. The three--
parameter model accounted for more of the response variance-with its
item calibration procedure than did the one-parameter model, but the
differences were small. No significant differences were found for-ability
estimates. However, all other factors were not found to be equal. The
sample size required for stable calibration seemed to be much greater
for the three parameter model, although the rasults were not totally
conclusive. Also, the computation costs and the computer facilities
required for the three-parameter procedure vere substantially larger
than those for the one-parameter model.

- The research reported here deals with the use of calibration
programs on data obcained from a group testing setting. Since item
calibration is a necessary component of the tailored testing procedures
based-upon latent trait models, the evaluation is an important first
step in the selection of a tailored testing procedure to be used for
achievement measurement. However, the group nature of this data
collection limits the generalizability of the results for individualized
tailored testing. The one-parameter calibration procedure has been
shown to give equivalent ability estimates at a lower cost than the
three parameter procedure when basically unifactor group tests are used.
However, the three-parameter procedure gives better fit to the item
response data, a fact that may imply more usable item parameter
estimates for tailored testing. -.Whether the better fit to the item
responses will outweigh the higher cost of calibration can only be
determined by a comparison of the usefulness of the ability estimates
cbtained from the procedures in live tailored testing. This comparison
will be reported in the next technical report in this series.
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